• Title/Summary/Keyword: cost optimization

Search Result 2,312, Processing Time 0.031 seconds

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

Extraction of Shape Information of Cost Function Using Dynamic Encoding Algorithm for Searches(DEAS) (최적화기법인 DEAS를 이용한 비용함수의 형상정보 추출)

  • Kim, Jong-Wook;Park, Young-Su;Kim, Tae-Gyu;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.790-797
    • /
    • 2007
  • This paper proposes a new measure of cost function ruggedness in local optimization with DEAS. DEAS is a computational optimization method developed since 2002 and has been applied to various engineering fields with success. Since DEAS is a recent optimization method which is rarely introduced in Korean, this paper first provides a brief overview and description of DEAS. In minimizing cost function with this non-gradient method, information on function shape measured automatically will enhance search capability. Considering the search strategies of DEAS are well designed with binary matrix structures, analysis of search behaviors will produce beneficial shape information. This paper deals with a simple quadratic function contained with various magnitudes of noise, and DEAS finds local minimum yielding ruggedness measure of given cost function. The proposed shape information will be directly used in improving DEAS performance in future work.

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

Optimal Design of Location Management Using Particle Swarm Optimization (파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계)

  • Byeon, Ji-Hwan;Kim, Sung-Soo;Jang, Si-Hwan;Kim, Yeon-Soo
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

Location Area Planning Using Ant Colony Optimization (개미군 최적화 방법을 이용한 Location Area Planning)

  • Kim, Sung-Soo;Kim, Hyung-Jun;Kim, Ki-Dong
    • Korean Management Science Review
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2008
  • The location area planning is to assign cells to the location areas of a wireless communication network in an optimum manner. The two important cost components are cost of location update and cost of paging that are of conflicting in nature; i.e., minimizing the registration cost might increase the search cost. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. In fact this is shown to be an NP-complete problem in an earlier study. In this paper, we use an ant colony optimization method to obtain the best/optimal group of cells for a given a network.

A multi-objective decision making model based on TLBO for the time - cost trade-off problems

  • Eirgash, Mohammad A.;Togan, Vedat;Dede, Tayfun
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • In a project schedule, it is possible to reduce the time required to complete a project by allocating extra resources for critical activities. However, accelerating a project causes additional expense. This issue is addressed by finding optimal set of time-cost alternatives and is known as the time-cost trade-off problem in the literature. The aim of this study is to identify the optimal set of time-cost alternatives using a multiobjective teaching-learning-based optimization (TLBO) algorithm integrated with the non-dominated sorting concept and is applied to successfully optimize the projects ranging from a small to medium large projects. Numerical simulations indicate that the utilized model searches and identifies optimal / near optimal trade-offs between project time and cost in construction engineering and management. Therefore, it is concluded that the developed TLBO-based multiobjective approach offers satisfactorily solutions for time-cost trade-off optimization problems.

Global torque optimization of redundant manipulator using dynamic programming

  • Shim, Ick-Chan;Yoon, Yong-San
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.811-814
    • /
    • 1997
  • In this paper, the torque optimization of a kinematically redundant manipulator for minimizing the torque demands is discussed. The minimum torque solution based on a local optimization has been known to encounter the instability problem and then the global torque optimization was suggested as one of the alternatives. Herein, by adopting the infinity-norm rather than the 2-norm for the magnitude of torques, we are to propose a new cost function more advantageous to the avoidance of torque limits. By the way, a solution to the global torque optimization formulated with the new cost function can not be obtained by the previous methods due to their difficulties such as inability to treat discontinuous cost functions and various constraints on the joint variables. Thus, to overcome those deficiencies, we are developing a new approach using the dynamic programming. The effectiveness of the proposed method is shown through simulation examples for a 3-link planar redundant manipulator.

  • PDF

The Mass Production Weapon System Environmental Stress-Screening Test Design Method based on Cost-effective-Optimization (비용 효과도 최적화 기반 양산 무기체계 환경 부하 선별 시험 설계 방법)

  • Kim, Jangeun
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.229-239
    • /
    • 2018
  • Purpose: There is a difficulty in Environmental Stress Screening (ESS) test design for weapon system's electrical/electronic components/products in small and medium-sized enterprises. To overcome this difficulty, I propose an easy ESS test design approach algorithm that is optimized with only one environment tolerance design information parameter (${\Delta}T$). Methods: To propose the mass production weapon system ESS test design for cost-effective optimization, I define an optimum cost-effective mathematical model ESS test algorithm model based on modified MIL-HDBK-344, MIL-HDBK-2164 and DTIC Technical Report 2477. Results: I clearly confirmed and obtained the quantitative data of ESS effectiveness and cost optimization along our ESS test design algorithm through the practical case. I will expect that proposed ESS test method is used for ESS process improvement activity and cost cutting of mass production weapon system manufacturing cost in small and medium-sized enterprises. Conclusion: In order to compare the effectiveness of the proposed algorithm, I compared the effectiveness of the existing ESS test and the proposed algorithm ESS test based on the existing weapon system circuit card assembly for signal processing. As a result of the comparison, it was confirmed that the test time was reduced from 573.0 minutes to 517.2minutes (9.74% less than existing test time).