• Title/Summary/Keyword: cosmology: cosmic microwave background

Search Result 16, Processing Time 0.024 seconds

SIMULATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION FIELDS FOR AMiBA EXPERIMENT

  • PARK CHAN-GYUNG;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ACDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

ANISOTROPY OF CMBR AND GAUGE INVARIANT COSMIC PERTURBATION THEORIES - SOME AMBIGUITIES AND PROBLEMS

  • XU CHONGMING;WU XUEJUN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.17-18
    • /
    • 1996
  • COBE's results on the anisotropy of the cosmic microwave background radiation (CMBR) is discussed. Some ambiguities in the linear GI cosmic perturbation theory are clarified. The problem of the last scattering surface and the deficiencies of the linear cosmic perturbation theory are mentioned. The possible ways to overcome the theoretical difficulties are discussed also.

  • PDF

CONSTRAINTS ON PRE-INFLATION COSMOLOGY AND DARK FLOW

  • MATHEWS, GRANT J.;LAN, N.Q.;KAJINO, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.309-313
    • /
    • 2015
  • If the present universe is slightly open then pre-inflation curvature would appear as a cosmic dark-flow component of the CMB dipole moment. We summarize current cosmological constraints on this cosmic dark flow and analyze the possible constraints on parameters characterizing the pre-inflating universe in an inflation model with a present-day very slightly open ${\Lambda}CDM$ cosmology. We employ an analytic model to show that for a broad class of inflation-generating effective potentials, the simple requirement that the observed dipole moment represents the pre-inflation curvature as it enters the horizon allows one to set upper and lower limits on the magnitude and wavelength scale of pre-inflation fluctuations in the inflaton field and the curvature parameter of the pre-inflation universe, as a function of the fraction of the total initial energy density in the inflaton field. We estimate that if the current CMB dipole is a universal dark flow (or if it is near the upper limit set by the Planck Collaboration) then the present constraints on ${\Lambda}CDM$ cosmological parameters imply rather small curvature ${\Omega}_k{\sim}0.1$ for the pre-inflating universe for a broad range of the fraction of the total energy in the inflaton field at the onset of inflation. Such small pre-inflation curvature might be indicative of open-inflation models in which there are two epochs of inflation.

COSMOLOGICAL LINEAR PERTURBATION THEORY (우주구조 선형건드림 이론)

  • Hwang, Jai-Chan
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.55-70
    • /
    • 2011
  • Cosmological linear perturbation theory has fundamental importance in securing the current cosmological paradigm by connecting theories with observations. Here we present an explanation of the method used in relativistic cosmological perturbation theory and show the derivation of basic perturbation equations.

LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA

  • Ko, Kyeong Yeon;Park, Chan-Gyung;Hwang, Jai-Chan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75-91
    • /
    • 2013
  • We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude ($|b|{\geq}30^{\circ}C$) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude ($|b|$ < $30^{\circ}C$) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.

SACHS-WOLFE EFFECT IN PERTURBED BIANCHI TYPE I UNIVERSE (건드림된 비앙키 I형 우주 모형과 SACHS-WOLFE 공식)

  • SONG D. J.
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • In the framework of the C-gauge condition for the perturbed variables and the linear approximation for the anisotropy of the spacetime, we studied the formulae for the Sachs-Wolfe effect in dust filled and perturbed Bianchi type I universe model. The results were compared with those of the flat Friedmann model.

  • PDF

CMBR FLUCTUATIONS IN THE BIANCHI TYPE I SPACETIME: THE EFFECTS OF GRAVITATIONAL WAVES (비앙키 I 형 시공간 속의 CMBR 흔들림: 중력파의 영향)

  • Song, D.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In the framework of linear perturbation theory and linear approximation of spacetime anisotropy, we investigated the formulae for the CMBR temperature anisotropy and fluctuation spectrum which have their origin in the primordial tensor perturbations of the perturbed Bianchi type I universe model. The resulting formulae were compared with those of the flat Friedmann model.

Testing LCDM with eBOSS / SDSS

  • Keeley, Ryan E.;Shafieloo, Arman;Zhao, Gong-bo;Koo, Hanwool
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.3-47.3
    • /
    • 2021
  • In this talk I will review recent progress that the SDSS-IV / eBOSS collaboration has made in constraining cosmology from the clustering of galaxies, quasars and the Lyman-alpha forest. The SDSS-IV / eBOSS collaboration has measured the baryon acoustic oscillation (BAO) and redshift space distortion (RSD) features in the correlation function in redshift bins from z~0.15 to z~2.33. These features constitute measurements of angular diameter distances, Hubble distances, and growth rate measurements. A number of consistency tests have been performed between the BAO and RSD datasets and additional cosmological datasets such as the Planck cosmic microwave background constraints, the Pantheon Type Ia supernova compilation, and the weak lensing results from the Dark Energy Survey. Taken together, these joint constraints all point to a broad consistency with the standard model of cosmology LCDM + GR, though they remain in tension with local measurements of the Hubble parameter.

  • PDF

HOW MODEL VARIANCE IN HIGH-REDSHIFT STAR FORMATION SHAPES COSMIC REIONIZATION HISTORY (다양한 고적색편이 별탄생 모형에 따른 우주 재이온화 역사의 변이)

  • Ahn, Kyungjin
    • Publications of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.67-79
    • /
    • 2019
  • We present a semi-analytical method to calculate the global evolution of the ionized state of the intergalactic medium, on the basis of physically motivated star formation histories in the early universe. This method incorporates not only the conventional scenarios in which the star formation rate is proportional to the growth rate of the halo collapse fraction, but also the more sophisticated scenarios in which the star formation is self-regulated. We show that this variance in the star-formation model strongly impacts the resulting reionization history, which bears a prospect for observational discrimination of these models. We discuss how observations of the anisotropic polarization of the cosmic microwave background and the global 21cm signal from the high-redshift universe, most notably by Planck and EDGES, may probe the history of reionization.

Recent progress in dark energy research

  • Park, Chan-Gyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2014
  • Astronomical observations strongly suggest that the expansion rate of our universe is currently under acceleration. The nature of the so-called dark energy causing the acceleration is unknown, and it is one of the fundamental mysteries in the present day theoretical cosmology. Here we briefly review the current state of cosmic dark energy research in both theoretical and observational sides. Constraints on dynamical dark energy models (e.g., w-fluid, quintessence, and modified gravity) with recent observational data from type Ia supernovae, cosmic microwave background radiation, and large-scale structures in the universe indicate a preferred direction toward the simplest ${\Lambda}$CDM world model. We also discuss some issues regarding the early dark energy model and the spherical collapse of matter in the presence of dark energy.

  • PDF