• Title/Summary/Keyword: cosmic rays.

Search Result 128, Processing Time 0.019 seconds

Energetic Nonthermal Particles ('Cosmic-Rays') & Their Acceleration in Collisionless Plasmas

  • JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.225-230
    • /
    • 2001
  • Rarefied cosmic plasmas generally do not achieve thermodynamic equilibria, and a natural consequence of this is the presence of a significant population of charged particles with energies well above those of the bulk population. These are exemplified by the galactic cosmic rays, but the importance of these high energy populations extends well beyond that context. I review here some of the basic issues associated with the propagation and acceleration of cosmic rays, especially in the context of collisionless plasma shocks.

  • PDF

COSMIC RAY ASTROPHYSICS

  • DRURY L O'C
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.267-270
    • /
    • 1996
  • The problem of the origin of cosmic rays is considered in an astronomical context and the current observational situation summarised. The evidence for acceleration in supernova remnants is critically examined.

  • PDF

Cosmic Ray Flux Variation Estimated from the Raw Solar Images

  • Oh, Suyeon;Park, Hyungmin;Park, Keunchan;Chae, Jongchul;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.96.2-96.2
    • /
    • 2013
  • The solar images are taken by the CCD detectors of the Sun monitoring satellites. The solar images are constructed after removing the traces of cosmic rays on the raw CCD data files. Thus, while applying the method of removing the cosmic rays traces, we can estimate the cosmic rays flux by counting the number of traces. The cosmic ray flux in the steady state might be the sum of the solar and galactic cosmic rays. However, the abrupt change in the flux could be assumed to be originated from the Sun. Therefore, we can identify the solar origins of the sudden solar cosmic ray flux changes from the phenomena shown in the processed solar images taken by SOHO/EIT. As the results, the estimated cosmic ray flux in the steady state is the anti-correlated with sunspot numbers, which shows the minima in cosmic ray flux at the solar cycle maxima defined by the sunspot numbers. The profiles of estimated solar cosmic ray associated with the ground level enhancements have the significant increase in the cosmic ray flux with good correlation. Thus, the solar images are valuable data useful in estimating the solar cosmic ray long term and transient flux variations.

  • PDF

COSMIC RAYS ACCELERATED AT SHOCK WAVES IN LARGE SCALE STRUCTURE

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.477-482
    • /
    • 2004
  • Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

EXTRAGALACTIC COSMIC RAYS AND MAGNETIC FIELDS: FACTS AND FICTION

  • ENBLIN TORSTEN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.439-446
    • /
    • 2004
  • A critical discussion of our knowledge about extragalactic cosmic rays and magnetic fields is at-tempted. What do we know for sure? What are our prejudices? How do we confront our models with the observations? How can we assess the uncertainties in our modeling and in our observations? Unfortunately, perfect answers to these questions can not be given. Instead, I describe efforts I am involved in to gain reliable information about relativistic particles and magnetic fields in extragalactic space.

COSMIC RAYS AND GAMMA-RAYS IN LARGE-SCALE STRUCTURE

  • INOUE SUSUMU;NAGASHIMA MASAHIRO;SUZUKI TAKERU K.;AOKI WAKO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.447-454
    • /
    • 2004
  • During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of $^6Li$ by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

Study of Extensive air shower simulation

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • Cosmic rays with energy exceeding 10^18eV are referred to as Ultra high energy cosmic rays (UHECRs). UHECR experiments have utilized air shower simulations to estimate the properties of cosmic rays. Telescope array (TA) experiment has used COSMOS and CORSIKA mainly; the Monte Carlo codes of CORSIKA and COSMOS simulate the evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei UHECRs. We compare the simulations from CORSIKA and COSMOS. Comparison has shown noticeable differences at the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax value. The implications of our results are discussed.

  • PDF

COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION

  • BLASI PASQUALE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.483-491
    • /
    • 2004
  • Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.