• Title/Summary/Keyword: cosmic microwave background

Search Result 31, Processing Time 0.036 seconds

SIMULATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION FIELDS FOR AMiBA EXPERIMENT

  • PARK CHAN-GYUNG;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ACDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

ANISOTROPY OF CMBR AND GAUGE INVARIANT COSMIC PERTURBATION THEORIES - SOME AMBIGUITIES AND PROBLEMS

  • XU CHONGMING;WU XUEJUN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.17-18
    • /
    • 1996
  • COBE's results on the anisotropy of the cosmic microwave background radiation (CMBR) is discussed. Some ambiguities in the linear GI cosmic perturbation theory are clarified. The problem of the last scattering surface and the deficiencies of the linear cosmic perturbation theory are mentioned. The possible ways to overcome the theoretical difficulties are discussed also.

  • PDF

Probing the Early Phase of Reionization through LiteBIRD

  • Ahn, Kyungjin;Sakamoto, Hina;Ichiki, Kiyotomo;Moon, Hyunjin;Hasegawa, Kenji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2021
  • Cosmic reionization imprints its history on the sky map of the cosmic microwave background (CMB) polarization. Even though mild, the signature of the reionization history during its early phase (z>15) can also impact the CMB polarization. We forecast the observational capability of the LiteBIRD(Lite(Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection), a truly cosmic-variance limited apparatus. We focus on the capability for such an apparatus to probe the partial optical depth of the CMB photons during z>15. We show that LiteBIRD is able to probe this quantity with a modest to high significance, enabling one to tell how efficient the cosmic reionization and star formation were at z>15.

  • PDF

My Research on Galaxies, Large-Scale Structures in the Universe, and Cosmic Microwave Background Radiation

  • Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.67-67
    • /
    • 2012
  • Exploring the distant universe by observing various astronomical objects and extending knowledge on the cosmos by applying human intuition and reasoning to observations are astronomers' professional activity. Astronomers are the people born under a lucky star since this elegant and beautiful job is their the only duty. Being in the 21st century we astronomers now know that galaxies are holding evolving stars and gas, and distribute in the infinite spacetime in an interesting way revealing the secrets of the beginning of the universe. Cosmic structures such as galaxies, large-scale structures, and cosmic microwave background fluctuations are also the tracers of the expansion of space and the invisible components of the energy contents of the universe. Unlike the past century we are in a situation where integral knowledge on various cosmic structures as well as that on a variety of observational and analysis tools are available to everyone and often required for our special mission. However, my experience made me think that accumulating critical questions on nature driven by curiosity is vital for researchers and far more important than absorbing knowledge from others and books. Transforming one's own question marks to acclamation marks is the reward of our life. That is THE fun.

  • PDF

Regional anomalies of cosmic microwave background power spectrum

  • Ju, Young;Park, Chan-Gyung;Hwang, Jai-Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.38.4-39
    • /
    • 2018
  • We analyze the Planck 2015 cosmic microwave background temperature fluctuation data to find any anomaly in the angular power spectra measured for partial regions on the sky. For disks with radius of $20^{\circ}$, $45^{\circ}$ and $90^{\circ}$, which are densely overlapping on the sky, we estimate the power excess and its statistical significance relative to the LambdaCDM expectation for some chosen ranges of angular scales. We also investigate the dipolar asymmetry using the power excess maps obtained for some chosen angular scales, and confirm the previously announced consistent dipole directions. The average dipole amplitude and the inner products of dipoles have been measured from the power excess maps at different angular scales. We conclude that although dipole directions are consistent the measured amplitudes are not statistically significant compared to the LambdaCDM model prediction.

  • PDF

Detecting the Signature of the First Stars through Planck CMB Polarization Observation

  • Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • We present the first simulations of cosmic reionization that include the first stars and their radiative feedback that limited their formation, in a volume large enough to capture the spatial variations that affected the process and its observability. We show hat these first stars made reionization begin much earlier than without, and was reatly extended, which boosts the intergalactic electron-scattering optical depth and the large-angle polarization fluctuations of the cosmic microwave background (CMB) significantly. Although within current WMAP uncertainties, this will enable Planck see he signature of the first stars at high redshift, currently undetectable by other probes.

  • PDF

COSMOLOGICAL LINEAR PERTURBATION THEORY (우주구조 선형건드림 이론)

  • Hwang, Jai-Chan
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.55-70
    • /
    • 2011
  • Cosmological linear perturbation theory has fundamental importance in securing the current cosmological paradigm by connecting theories with observations. Here we present an explanation of the method used in relativistic cosmological perturbation theory and show the derivation of basic perturbation equations.