• Title/Summary/Keyword: cortical bone thickness

Search Result 132, Processing Time 0.025 seconds

The Effect of Osteotome Technique on Primary Implant Stability according to Bone Quality (임플란트 일차 안정성에 있어서 골질에 따른 osteotome 술식의 효과)

  • Baek, Seung-Jae;Lee, Jae-Kwan;Park, Chan-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.777-788
    • /
    • 2005
  • The primary stability of implants is an important factor to predict the osseointegration. Recently, the resonance frequency analysis has been used to measure the primary stability. It is an objective method to monitor the stability of implants during healing phase. This study is to validate the differences in the effect of the osteotome method according to the bone quality as well the thickness of cortical bone. Two hundred seventy implants of 3.75mm in diameter(Neoplant, Neobiotech, Korea) were placed in 135 bovine ribs. The bone quality is classified into 3 classes according to the number of bone marrow spaces which implants would be placed, and then classified into 9 subclasses after the ribs were trimmed. Two implants were placed in 15 specimens of each class. The conclusion were as follows: 1. In case of less dense cancellous bone, the oseotome method is more effective in primary stability rather than the drilling method(p <0.05). 2. If there was cortical bone, it is more advantagous to get stronger primary stability. 3. If cancellous bone is more dense or if cortical bone exists, there is no statistical significance between drilling and osteotome method(p <0.05).

Dependencies of phase velocities of ultrasonic guided waves on cortical thickness in soft tissue-bone mimicking phantoms (연조직-골 모사 팬텀에서 피질골 두께에 대한 유도초음파 위상속도의 의존성)

  • Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.587-592
    • /
    • 2021
  • Change in the cortical thickness of long bones occurring with aging and osteoporosis is known to be a risk factor for fracture. The present study aims to investigate the dependencies of phase velocities of ultrasonic guided waves on the cortical thickness in 7 soft tissue-bone mimicking phantoms consisting of acrylic plates covered by a 2 mm-thick silicone rubber layer by using the axial transmission technique with a pair of transducers with a center frequency of 200 kHz and a diameter of 12.7 mm. Two distinct propagating waves with different velocities, the First Arriving Signal (FAS) and the Slow Guided Waved (SGW), were consistently observed for all the soft tissue-bone mimicking phantoms. The FAS velocity decreased slightly with increasing thickness, whereas the SGW velocity increased strongly with increasing thickness. The FAS and the SGW velocities were found to be closely consistent with the S0 and the A0 Lamb mode velocities for a free acrylic plate, respectively, suggesting that the presence of the soft tissue mimicking material (2 mm-thick silicone rubber layer) covering the acrylic plates does not influence significantly the velocity measurements.

Proximity of maxillary molar apexes to the cortical bone surface and the maxillary sinus

  • Han Shin Lee;Dokyung Kim;Sung Kyo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.33.1-33.10
    • /
    • 2022
  • Objectives: This study aimed to analyze the proximity of maxillary molar roots to their overlying cortical bone surfaces and the maxillary sinus. Materials and Methods: Cone-beam computed tomographic images of 151 patients with completely erupted upper molars that had 3 separate roots were studied. The following distances were measured: from the root apex to the cortical plate and maxillary sinus floor, and from the apical 3-mm level of the root to the cortical plate. Differences between groups were analyzed with 1-way analysis of variance and the Scheffé post hoc test, the significance of differences between cone-beam computed tomography views with the paired t-test, and the significance of differences among age groups with linear regression analysis. The significance level was set at p < 0.05. Results: The mesiobuccal and distobuccal root apexes of maxillary second molars were more distant from the buccal cortical plate than the maxillary first molars (p < 0.05). The apical 3-mm level of the mesiobuccal root of the first molar was closer to the buccal cortical bone than the second molar (p < 0.05). In the maxillary first molars, the thickness of the buccal cortical bone decreased in all roots with age (p < 0.05). In all root apexes of both molars, the difference in the vertical level between the maxillary sinus floor and the root apex increased with age (p < 0.05). Conclusions: Awareness of the anatomical profile of maxillary molar apices in relation to the cortical bones and maxillary sinus will be beneficial for apical surgery.

Cortical bone thickness and root proximity at mandibular interradicular sites: implications for orthodontic mini-implant placement (하악의 교정용 미니 임플랜트 식립 부위에서의 피질골 두께와 치근간 거리: 3차원으로 재구성한 CT 영상을 이용한 연구)

  • Lim, Ju-Eun;Lim, Won-Hee;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.397-406
    • /
    • 2008
  • Objective: The purpose of this study was to provide clinical guidelines to indicate the best location for mini-implants as it relates to the cortical bone thickness and root proximity. Methods: CT images from 14 men and 14 women were used to evaluate the buccal interradicular cortical bone thickness and root proximity from mesial to the central incisor to the 2nd molar. Cortical bone thickness was measured at 4 different angles including $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$. Results: There was a statistically significant difference in cortical bone thickness between the second premolar/first permanent molar site, central incisor/central incisor site, between the first/second permanent molar site and in the anterior region. A statistically significant difference in cortical bone thickness was also found when the angulation of placement was increased except for the 2 mm level from the alveolar crest. Interradicular spaces at the 1st/2nd premolar, 2nd premolar/1st permanent molar and 1st/2nd permanent molar sites are considered to be wide enough for mini-implant placement without root damage. Conclusions: Given the limits of this study, mini-implants for orthodontic anchorage may be well placed at the 4 and 6 mm level from the alveolar crest in the posterior region with a $30^{\circ}$ and $45^{\circ}$ angulation upon placement.

EFFECTS OF BONE ENGAGEMENT TYPE&IMPLANT LENGTH ON STRESS DISTRIBUTION: A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (임플란트 매식조건에 따른 상, 하악골의 응력분포 양상에 대한 3차원 유한요소분석 연구)

  • Choi, Jeong-Hwa;Seo, Ki-Youl;Choi, Joo-Ho;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.687-697
    • /
    • 1999
  • A finite element analysis has been utilized to analyze stress and strain fields and design a new configuration in orthopedics and implant dentistry. Load transfer and stress analysis at implant bone interface are important factors from treatment planning to long term success. Bone configuration and quality are different according te anatomy of expecting implantation site. The purpose of this study was to compare the stress distribution in maxilla and mandible accord-ing to implant length and bone engagement types. A three dimensional axi-symmetric implant model(Nobel Biocare, Gothenburg, Sweden) with surrounding cortical and cancellous bone were designed to analyze the effects of bone engagement and implant length on stress distribution. ANSYS 5.5 finite element program was utilized as an interpreting toot. Three cases of unicortical anchorage model with 7, 10, 13 mm length and four cases of bicortical anchorage model with 5, 7, 10 and 13 mm length were compared both maxillary and mandibular single implant situation. Within the limits of study, following conclusions were drawn. 1. There is a difference in stress distribution according to cortical and cancellous bone thickness and shape. 2. Maximum stress was shown at the top of cortical bone area regardless of bone engagement types. 3. Bicortical engagement showed less stress accumulation when compared to unicortical case overall. 4. Longer the implant future length, less the stress on cortical bone area, however there is no difference in mandibular bicortical engagement case.

  • PDF

Finite Element Approach to Investigate the Influence of the Jaw Bone Dimension on the Stress Around the Root Analogue Dental Implant (악골폭경이 치근형 임플란트 인접골에서의 응력에 미치는 영향에 대한 유한요소해석적 연구)

  • Jang, Ji-Man;Lee, Kyu-bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.37-53
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the influences of the jaw dimension on the bone stress. Materials and Methods: Root analogue implant of Frialit-2 Synchro model in the jaw bone of various thickness from 8mm to 13mm were modelled axisymmetrically for a series of finite element analyses. As load conditions, non-axisymmetric lateral load of 20N and an oblique load of 50N, as well as an axisymmetric vertical load of 50N were taken into consideration. Results: The cervical area of implant under the axisymmetric load and the base cortical bone under the non axisymmetric load condition were the areas of main concern where the higher level of stress were likely to be obtained. Conclusion: The results indicated that at the two concerned areas drastically different stress distribution could take place as a function of the load conditions. Under the vertical load, the lower level of stress was observed for the narrow jaw bone at the cervical cortical bone whereas stress at the base cortical bone remained virtually unchanged. Under the non axisymmetric load condition, however, the stress at the base cortical bone increased very rapidly as the jaw bone width increased without inducing any significant change in the stress level at the cervical area.

The effects of circadian disturbances induced by night shifts on the mouse peripheral tissues

  • Seo, Dong-Hyun;Kim, Han-Sung;Ko, Chang-Yong;Schreiber, Jurgen;Jang, Yeong-Su;Bae, Kiho
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.357-365
    • /
    • 2012
  • We have examined the effect of circadian disturbances induced by night shifts (NSs) on the phenotypes of the tibiae and abdominal adipose tissues (ADTs) in a mouse model by using in vivo micro-computed tomography (micro-CT). We found that the volumes of total and visceral ADTs in the night-shifted group of mice were significantly larger (69 and 92%, respectively) than those in the control. The mean polar moment of inertia, cross-sectional thickness, and bone mineral density of the cortical bone in the night-shifted group of mice were less (13, 5, and 3%, respectively) than those in the control. Moreover, the volume and the thickness of growth plates (GPs) of the tibiae in the night-shifted mice were significantly smaller (22 and 20%, respectively) than those in the control. Taken together, our results indicate that disturbances in the mouse circadian rhythms induced by NSs affect the morphological characteristics of cortical bone, the volume and the thickness of GPs, and the volume of ADTs.

Prediction of osteoporosis using fractal analysis et cetera on panoramic radiographs (파노라마 방사성사진에서 프랙탈 분석 등을 이용한 골다공증 예측)

  • Kim, Joo-Yeon;Nah, Kyung-Soo
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.79-82
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate whether panoramic radiographs were useful in predicting osteoporosis. Materials and Methods: 50 postmenoposal women between the age of 41.8 and 78.5 were classified as normal and osteoporosis groups according to the bone mineral density of lumbar vertebrae. Panoramic radiographs were taken. Age, body mass index, remaining mandibular teeth, mandibular cortical thickness and morphology, and fractal dimensions at periapical areas of mandibular first molars were evaluated to differentiate the two groups. Results: The age of osteoporotic group was statistically significantly higher than that of normal group (p<0.05), but not the body mass index or number of remaining mandibular teeth. The mean fractal dimension of osteoporotic group was $1.391{\pm}0.085$, and was significantly lower than that of the normal group, which was $1.523{\pm}0.725$ (p<0.01). Thick mandibular cortical thickness was common in normal group, whereas thin or very thin mandibular cortical thickness was common in osteoporotic group and the difference was significant (p < 0.05). C2 pattern was common in normal group followed by C1, whereas C2 was common in osteoporotic group followed by C3. The difference was statistically significant (p< 0.0 1). Conclusion: Age, mandibular cortical thickness and shape, fractal dimension on panoramic radiographs were useful in predicting osteoporosis.

  • PDF

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Bone cement grafting increases implant primary stability in circumferential cortical bone defects

  • Shin, Seung-Yun;Shin, Seung-Il;Kye, Seung-Beom;Chang, Seok-Woo;Hong, Jongrak;Paeng, Jun-Young;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • Purpose: Implant beds with an insufficient amount of cortical bone or a loss of cortical bone can result in the initial instability of a dental implant. Thus, the objective of this study was to evaluate the effect of bone cement grafting on implant initial stability in areas with insufficient cortical bone. Methods: Two different circumferential defect depths (2.5 mm and 5 mm) and a control (no defect) were prepared in six bovine rib bones. Fourteen implants of the same type and size ($4mm{\pm}10mm$) were placed in each group. The thickness of the cortical bone was measured for each defect. After the implant stability quotient (ISQ) values were measured three times in four different directions, bone cement was grafted to increase the primary stability of the otherwise unstable implant. After grafting, the ISQ values were measured again. Results: As defect depth increased, the ISQ value decreased. In the controls, the ISQ value was $85.45{\pm}3.36$ ($mean{\pm}standard$ deviation). In circumferential 2.5-mm and 5-mm defect groups, the ISQ values were $69.42{\pm}7.06$ and $57.43{\pm}6.87$, respectively, before grafting. These three values were significantly different (P<0.001). After grafting the bone cement, the ISQ values significantly increased to $73.72{\pm}8.00$ and $67.88{\pm}10.09$ in the 2.5-mm and 5.0-mm defect groups, respectively (P<0.05 and P<0.001). The ISQ value increased to more than double that before grafting in the circumferential 5-mm defect group. The ISQ values did not significantly differ when measured in any of the four directions. Conclusions: The use of bone cement remarkably increased the stability of the implant that otherwise had an insufficient level of stability at placement, which was caused by insufficient cortical bone volume.