DOI QR코드

DOI QR Code

Dependencies of phase velocities of ultrasonic guided waves on cortical thickness in soft tissue-bone mimicking phantoms

연조직-골 모사 팬텀에서 피질골 두께에 대한 유도초음파 위상속도의 의존성

  • Lee, Kang Il (Department of Physics, Kangwon National University)
  • Received : 2021.08.23
  • Accepted : 2021.10.08
  • Published : 2021.11.30

Abstract

Change in the cortical thickness of long bones occurring with aging and osteoporosis is known to be a risk factor for fracture. The present study aims to investigate the dependencies of phase velocities of ultrasonic guided waves on the cortical thickness in 7 soft tissue-bone mimicking phantoms consisting of acrylic plates covered by a 2 mm-thick silicone rubber layer by using the axial transmission technique with a pair of transducers with a center frequency of 200 kHz and a diameter of 12.7 mm. Two distinct propagating waves with different velocities, the First Arriving Signal (FAS) and the Slow Guided Waved (SGW), were consistently observed for all the soft tissue-bone mimicking phantoms. The FAS velocity decreased slightly with increasing thickness, whereas the SGW velocity increased strongly with increasing thickness. The FAS and the SGW velocities were found to be closely consistent with the S0 and the A0 Lamb mode velocities for a free acrylic plate, respectively, suggesting that the presence of the soft tissue mimicking material (2 mm-thick silicone rubber layer) covering the acrylic plates does not influence significantly the velocity measurements.

노화 및 골다공증으로 인해 긴 뼈에서 발생하는 피질골의 두께 변화는 골절의 위험인자로 알려져 있다. 본 연구는 200 kHz의 중심주파수 및 12.7 mm의 직경을 갖는 한 쌍의 트랜스듀서와 함께 축방향 전파법을 이용하여 윗면이 2 mm 두께의 실리콘 고무층으로 덮인(1 mm부터 4 mm까지의 두께를 갖는) 아크릴판으로 제작된 7개의 연조직-골 모사 팬텀에서 피질골 두께에 대한 유도초음파 위상속도의 의존성을 고찰하였다. 모든 연조직-골 모사 팬텀에서 서로 다른 속도를 갖는 First Arriving Signal(FAS) 및 Slow Guided Wave(SGW)가 전파하는 것으로 일관되게 관찰되었다. FAS의 위상속도는 피질골 두께가 증가함에 따라 약간 감소하는 반면 SGW의 위상속도는 피질골 두께가 증가함에 따라 크게 감소하는 것으로 나타났다. FAS 및 SGW의 위상속도는 각각 실리콘 고무층을 갖지 않는 아크릴판에서 전파하는 S0 및 A0 램 모드의 위상속도와 거의 일치하는 것으로 나타났으며, 이는 아크릴판의 윗면을 덮고 있는 연조직 모사 물질(2 mm 두께의 실리콘 고무층)의 존재가 위상속도 측정에 큰 영향을 미치지 않는다는 것을 의미한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1F1A1040854 and No. 2021R1F1A1046161), and was also supported by the research grant of Kangwon National University in 2021.

References

  1. J. A. Kanis, E. V. McCloskey, H. Johansson, A. Oden, L. J. Melton III, and N. Khaltaev, "A reference standarad for the description of osteoporosis," Bone, 42, 467-475 (2008). https://doi.org/10.1016/j.bone.2007.11.001
  2. P. Moilanen, "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1277-1286 (2008). https://doi.org/10.1109/TUFFC.2008.790
  3. I. M. Siegel, G. T. Anast, and T. Fields, "The determination of fracture healing by measurements of sound velocity across the fracture site," Surg. Gynecol. Obstet. 107, 327-332 (1958).
  4. M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, J. Timonen, M. Talmant, S. Cheng, and P. Laugier, "Comparison of three ultrasonic axial transmission methods for bone assessment," Ultrasound Med. Biol. 31, 633-642 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.02.001
  5. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1179-1196 (2008). https://doi.org/10.1109/TUFFC.2008.782
  6. K. I. Lee and S. W. Yoon, "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia," J. Acoust. Soc. Am. 115, 3210-3217 (2004). https://doi.org/10.1121/1.1707086
  7. M. Sasso, M. Talmant, G. Haiat, S. Naili, and P. Laugier, "Analysis of the most energetic late arrival in axially transmitted signals in cortical bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 2463-2470 (2009). https://doi.org/10.1109/TUFFC.2009.1333
  8. J. Foiret, Q. Grimal, M. Talmant, R. Longo, and P. Laugier, "Probing heterogeneity of cortical bone with ultrasound axial transmission," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 187-193 (2013). https://doi.org/10.1109/TUFFC.2013.2549
  9. T. N.H.T. Tran, L. Stieglitz, Y. J. Gu, and L. H. Le, "Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue," Ultrasound Med. Biol. 39, 2422-2430 (2013). https://doi.org/10.1016/j.ultrasmedbio.2013.06.007
  10. H. Lamb, "On waves in an elastic plate," Proc. R. Soc. London A, 93, 114-128 (1917). https://doi.org/10.1098/rspa.1917.0008
  11. P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas. 23, 755-768 (2002). https://doi.org/10.1088/0967-3334/23/4/313
  12. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, "Ultrasonic propagation in cortical bone mimics," Phys. Med. Biol. 51, 4635-4647 (2006). https://doi.org/10.1088/0031-9155/51/18/012
  13. J. A. Chen, J. Foiret, J. G. Minonzio, M. Talmant, Z. Q. Su, L. Cheng, and P. Laugier, "Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission," Phys. Med. Biol. 57, 3025-3037 (2012). https://doi.org/10.1088/0031-9155/57/10/3025
  14. M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, "A review of tissue substitutes for ultrasound imaging," Ultrasound Med. Biol. 36, 861-873 (2010). https://doi.org/10.1016/j.ultrasmedbio.2010.02.012