• Title/Summary/Keyword: cortical activation

Search Result 122, Processing Time 0.028 seconds

Useful Corrosion - Potential of Magnesium Alloys as Implants

  • Kaya, A. Arslan;Kaya, R. Alper;Witte, Frank;Duygulu, Ozgur
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • Degradable implants have been in use for bone surgery for decades. However, degradable metal implants are one of the new research areas of biomaterials science. Magnesium has good biocompatibility due to its low toxicity, and it is a corroding, i.e. dissolvable, metal. Furthermore, magnesium is needed in human body, and naturally found in bone tissue. There have been some published reports also asserting the potential bone cell activation or bone healing effect of high magnesium ion concentrations. The classic method for achieving intertransverse process fusion involves autogenous iliac crest bone graft. Several investigations have been performed to enhance this type of autograft fusion. However, there is no research which has been undertaken to investigate the efficiency of pure magnesium particles in posterolateral spinal fusion. In this study, corrosion behavior of magnesium metal at the bone interface, the possibility of new bone cell formation and the degree of effectiveness in producing intertransverse process lumbar fusion in a sheep model have been investigated. Cortical bone screws were machined from magnesium alloy AZ31 extruded rod and implanted to hip-bones of sheep via surgery. Three months after surgery, the bone segments carrying these screws were removed from the sacrificed animals. Samples were sectioned to reveal Mg/bone interfaces and investigated using optical microscope, SEM-EDS and radiography. Optical and SEM images showed that there was a significant amount of corrosion on the magnesium screw. The elemental mapping results indicate, due to the presence of calcium and phosphorus elements, that there exists new bone formation at the interface. Furthermore, sixteen sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at various locations along their spines. Each animal was treated with 5cc autograft bone at one fusion level and 1cc magnesium+5cc autograft bone at the other. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and radiological, histological, scanning electron microscopic and x-ray diffraction analyses. It may be stated that the potential for using useful corrosion of magnesium alloys in medical applications is expected to be significant.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Adverse Effect of Superovulation Treatment on Maturation, Function and Ultrastructural Integrity of Murine Oocytes

  • Lee, Myungook;Ahn, Jong Il;Lee, Ah Ran;Ko, Dong Woo;Yang, Woo Sub;Lee, Gene;Ahn, Ji Yeon;Lim, Jeong Mook
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.558-566
    • /
    • 2017
  • Regular monitoring on experimental animal management found the fluctuation of ART outcome, which showed a necessity to explore whether superovulation treatment is responsible for such unexpected outcome. This study was subsequently conducted to examine whether superovulation treatment can preserve ultrastructural integrity and developmental competence of oocytes following oocyte activation and embryo culture. A randomized study using mouse model was designed and in vitro development (experiment 1), ultrastructural morphology (experiment 2) and functional integrity of the oocytes (experiment 3) retrieved after PMSG/hCG injection (superovulation group) or not (natural ovulation; control group) were evaluated. In experiment 1, more oocytes were retrieved following superovulation than following natural ovulation, but natural ovulation yielded higher (p < 0.0563) maturation rate than superovulation. The capacity of mature oocytes to form pronucleus and to develop into blastocysts in vitro was similar. In experiment 2, a notable (p < 0.0186) increase in mitochondrial deformity, characterized by the formation of vacuolated mitochondria, was detected in the superovulation group. Multivesicular body formation was also increased, whereas early endosome formation was significantly decreased. No obvious changes in other microorganelles, however, were detected, which included the formation and distribution of mitochondria, cortical granules, microvilli, and smooth and rough endoplasmic reticulum. In experiment 3, significant decreases in mitochondrial activity, ATP production and dextran uptake were detected in the superovulation group. In conclusion, superovulation treatment may change both maturational status and functional and ultrastuctural integrity of oocytes. Superovulation effect on preimplantation development can be discussed.

Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway

  • Cui, Yanji;Amarsanaa, Khulan;Lee, Ji Hyung;Rhim, Jong-Kook;Kwon, Jung Mi;Kim, Seong-Ho;Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2019
  • Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons ($100{\mu}M$, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner ($1-50{\mu}M$) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of $Ca^{2+}$ and ROS, mitochondrial membrane potential (${\Delta}{\Psi}_m$) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.

Comparison of Electroencephalographic Changes during Mental Practice and Action Observation in Subjects with Forward Head Posture (상상연습과 동작관찰 동안 전방머리자세의 대뇌겉질 활성도 비교)

  • Yang, Hoesong;Kang, Hyojeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the difference in motor cortical excitability during mental practice and action observation in subjects with forward head posture. Methods : This study was performed in two groups, a forward head posture group (n=17) and a normal posture group (n=17). Electroencephalography (EEG) was conducted to investigate cerebral cortex activity, and six electrodes were attached to Fp1, Fp2, C1, C2, C3, and C4 to measure the relative alpha power, relative beta power, relative gamma power, and mu rhythms. The subjects were requested to perform the four different conditions, which were eye opening, eye closing, mental practice, and action observation for 300 seconds. Results : The results showed that the relative alpha waves showed a significant difference between the normal and forward head posture groups in the C1, C2, C3, and C4 regions with the eyes open (p<.05). The relative beta waves also showed a significant difference between the two groups in the Fp1 and Fp2 regions during action observation (p<.05). The relative gamma waves were significantly different between the normal and forward head posture groups in the Fp1 and Fp2 regions during action observation (p<.05) in C1, C2, and C3 with eyes closed (p<.05) and in C1, C2, C3, and C4 with eyes open (p<.05). Conclusion : The results of this study showed that EEG change in the forward head posture group was different from that in the normal control group in action observation rather than in mental practice. Therefore, we are expected to provide a neurophysiological basis for applying action observation to motor skill learning during exercise for correcting forward head posture.

Comparative Study of Gingival Changes in Cyclosporine-Induced Nephrotoxicity with Normal and Low Salt Diet (저염식으로 유도한 Cyclosporine 신독성 백서에서의 치은 변화)

  • Lim, Jae-Gye;Kim, Yong-Jin;Park, Yong-Hoon
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.359-374
    • /
    • 2000
  • Cyclosporine A(CsA) is a widely used immunosuppressant for transplant patients and is also used for the treatment of a wide variety of systemic diseases with immunologic disorders. However, its use is frequently limited because of complications such as nephrotoxicity or gingival hyperplasia. Although several hypotheses have been postulated for CsA-induced gingival hyperplasia, i.e. various cytokine effects of inflammatory cells, existence of plaque or CsA itself, but its pathogenesis is still unclear. For experimental chronic CsA toxicity, salt depletion has been shown to increased susceptibility of rodents to the effects of CsA, and this maneuver facilitates production of arteriolopathy and interstitial fibrosis in kidney that mimic the changes found in human. The purpose of this study was to evaluate pathogenesis of CsA-induced gingival hyperplasia by comparing changes between CsA administration groups of normal standard diet and those of low salt diet group. Specific pathogen-free, 20 to 25 days old(120 to 150 g), male Fisher-344 rats(KIST, Korea), 120 to 150g of body weight, were assigned to four groups of six animals each after one week of adaptation period for powder food. Group 1 received olive oil($300{\mu}l/g\;of\;diet$) with normal standard diet(0.4% of sodium)(NSD). Group 2 received CsA(Cypol-N, Jonggundang, Korea; $300{\mu}g/g\;of\;diet$) with normal standard diet(NSD+CsA). Group 3 received same amount of olive oil with low salt diet(0.05 % of sodium, Teklad Premier, U.S.A.)(LSD). Group 4 received same dose of CsA with low salt diet(LSD+CsA). Rats were pair fed and were sacrificed after six weeks. Renal histologic lesions associated with CsA, consisted of cortical interstitial fibrosis, tubular atrophy and hyalinization of arterioles and the impairment of renal function including increase of serum creatinine and decrease of glomerular filtration rate was more severe in low salt diet group. These were proved as the results of activated of renin-angiotensin system in the kidney by low salt condition. Meanwhile the degree of gingival hyperplasia at incisor and molar tooth was less severe in low salt diet group compared with normal sodium diet group. Hyperplastic gingiva showed mild epithelial hyperplasia and expanded underlyng stroma which consisted of matrix increasement, capillary proliferation and dilatation. While the number and the activation of fibroblasts were increased, inflammatory cells were rare in the stroma. The immunohistochemistry for TGF-${\beta}_1$ in the kidney and gingiva revealed stronger positive in LSD+CsA in kidney but in gingiva of NSD+CsA. These results suggested followings; Gingival hyperplasia can be developed without inflammatory cells infiltration and seemed not induced by CsA by itself. The major role for gingival hyperplasia by CsA would be the secondary effect of TGF-${\beta}$, which maybe upregulated by CsA administration. Low salt diet can attenuate this hyperplasia perhaps by decreasing the activation of $TGF-{\beta}$.

  • PDF

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

Abnormal Behavior Controlled via GPR56 Expression in Microglia (미세아교세포에서 GPR56 발현에 의한 이상 행동)

  • Hyunju Kim
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.455-462
    • /
    • 2023
  • During pregnancy, maternal immune activation (MIA) from infection increases the risk of neurodevelopmental diseases, including schizophrenia and autism spectrum disorders. MIA induced by polyinosinic-polycytidylic acid (poly (I:C)) and lipopolysaccharide (LPS) in animal experiments has led to offspring with abnormal behaviors and brain development. In addition, it has recently been reported that microglia, which reside in the brain and function as immune cells, play an important role in behavioral abnormalities and brain development in MIA-induced offspring. However, the underlying mechanism remains unclear. In this study, we investigated whether microglia-specific inhibition of GPR56, a member of the G protein-coupled receptor (GPCR) family, causes behavioral abnormalities in brain development. First, MIA induction did not affect the microglia population, but when examining the expression of microglial GRP56 in MIA-induced fetuses, GPR56 expression was inhibited between embryonic days 14.5 (E14.5) and E18.5 regardless of sex. Furthermore, microglial GPR56-suppressed mice showed abnormal behaviors in the MIA-induced offspring, including sociability deficits, repetitive behavioral patterns, and increased anxiety levels. Although abnormal cortical development such as that in the MIA-induced offspring were not observed in the microglial GPR56-suppressed mice, their brain activity was observed through c-fos staining. These results suggest that microglia-specific GPR56 deficiency may cause abnormal behaviors and could be used as a biomarker for the diagnosis and/or as a therapeutic target of behavioral deficits in MIA offspring.

The Change of Cortical Activity Induced by Visual Disgust Stimulus (시각혐오자극으로 유발된 대뇌 피질 활성도 변화)

  • Jung, Wook;Park, Doo-Heum;Yu, Jae-Hak;Ryu, Seung-Ho;Ha, Ji-Hyeon;Shin, Byoung-Hak
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Objectives: There are a lot of studies that analyze the interaction between the emotion of disgust and the functional brain images using fMRI and PET. But studies using sLORETA (standardized low resolution brain electromagnetic tomography) almost do not exist. The aim of this research is to explore the relationship of the emotion of disgust and the cortical activation using sLORETA analysis. Methods: Forty five healthy young adults ($27.1{\pm}2.6$ years) participated in the study. While they were watching 4 neutral images and 4 disgusting images associated with mutilation selected from the international affective picture system (IAPS), participants' EEGs were taken for 30 seconds per one picture. Through these obtained EEG data, sLORETA analysis was performed to compare EEGs associated with neutral and negative images. Results: During looking for visual disgusting stimulus, all participants reported unpleasantness, arousal and stress. In sLORETA analysis, the decrease of current density in theta wave was shown at left frontal superior gyrus (BA10) and middle gyrus (BA10, 11). This voxel cluster consists of a total of 11 voxels and the threshold of t value indicating statistically significant decreases in the current density (p<0.05) was -1.984. There were no differences between male and female in the degree of being disgusted by the stimuli. Conclusion: This finding may suggest that the activation of dorsolateral prefrontal cortex might be associated with regulating disgust emotion.

THE EFFECT OF LOW DIETARY CALCIUM AND IRRADIATION ON MANDIBLE IN RATS (저칼슘식이와 방사선조사가 백서 악골에 미치는 영향의 실험적 연구)

  • Lee Sun-Ki;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.2
    • /
    • pp.229-250
    • /
    • 1993
  • This study was performed to investigate the morphological and structural changes of bone tissues and the effects of irradiation on the mandibular bodies of rats which were fed low calcium diets. In order to carry out this experiment, 160 seven-week old Sprague-Dawley strain rats weighing about 150 gm were selected and equally divided into one normal diet group of 80 rats and one low calcium diet group with the remainder. These groups were then subdivided into two groups, 40 were assigned rats for each subdivided group, exposed to radiation. The Group 1 was composed of forty non-irradiated rats with normal diet, Group 2 of forty irradiated rats with normal diet, Group 3 forty non-irradiated rats with low calcium diet, and Group 4 forty irradiated rats with low calcium diet. The two irradiation groups received a single dose of 20 Gy on the jaw area only and irradiated with a cobalt-50 teletherapy unit. The rats with normal and low calcium diet groups were serially terminated by ten on the 3rd, the 7th, the 14th, and the 21st day after irradiation. After termination, both sides of the dead rats mandible were removed and fixed with 10% neutral formalin. The bone density of mandibular body was measured by use of bone mineral densitometer(Model DPX -alpha, Lunar Corp., U.SA). Triga Mark ill nuclear reactor in Korea Atomic Research Institute was used for neutron activation and then calcium contents of mandibular body were measured by using a 4096 multichannel analyzer (EG and G ORTEC 919 MCA, U.SA). Also the mandibular body was radiographed with a soft X-ray apparatus(Hitex Co., Ltd., Japan). Thereafter, the obtained microradiograms were observed by a light microscope and were used for the morphometric analysis using a image analyzer(Leco 2001 System, Leco Co., Canada). The morphometric analysis was performed for parameters such as the total area, the bone area, the inner and outer perimeters of the bone. The obtained results were as follows: 1. In the morphometric analysis, total area and outer perimeter of the mandibular bodies of Group 3 were a little smaller than that of Group 1. The mean bone width and bone area were much smaller than that of Group 1 and the inner perimeter of Group 3 was much longer than that of Group 1. The total area and outer perimeter of Group 2 and Group 4 showed little difference. The mean bone width and bone area of Group 4 were smaller than that of Group 2 and the inner perimeter of Group 4 was longer than that of Group 2. 2. The remarkable decreases of the number and thickness of trabeculae and also the resorption of endosteal surface of cortical bone could be seen in the microradiogram of Group 3, Group 4 since the 3rd day of experiment. On the 21st day of experiment, the above findings could be more clearly seen in Group 4 than in Group 3. 3. The bone mineral density of Group 3 was lesser than that of Group 1 and the bone mineral density of Group 4 was lesser than that of Group 2 on the 7th, 14th, 21st days. The irradiation caused the bone mineral density to be decreased regardless of diet. In the case of Groups with low calcium diet, the bone mineral density was much decreased on the 21st day than on the 3rd day of experiment. 4. The calcium content in mandible of Group 3 was smaller than that of Group 1 throughout the experiment. roup 4 showed the least amount of calcium content. The irradiation caused the calcium content to be decreased regardless of diet. In the case of Groups with low calcium diet, the calcium content was much decreased on the 21st day than on the 3rd day of experiment. In conclusion, the present study demonstrated that morphological changs and decrease of bone mass due to resorption of bone by low calcium diet, and that the resorption of bone could be found in the spongeous bone and endosteal surface of cortical bone. So the problem of resorption of bone must be considered when the old and the postmenopausal women are taken radiotherapy because the irradiation seems to be accelerated the resorption of osteoporotic bone.

  • PDF