• Title/Summary/Keyword: corrosion ratio

Search Result 584, Processing Time 0.03 seconds

Evaluation of Tensile and Compressive Performance of CFRP Rebars according to Heating Temperatures (가열온도에 따른 CFRP Rebar의 인장 및 압축 성능 평가)

  • Jae-Hee Lee;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • The demand for FRPs that are corrosion-free and have an excellent tensile strength-to-weight ratio. However, there is a lack of research on the mechanical properties of FRP in the form of rebars, especially the changes in performance due to heating. Therefore, in this paper, 60 tensile and compression specimens of CFRP rebars with a diameter of 12 mm were fabricated and subjected to direct tensile and direct compression tests, and their performance was evaluated according to the heating temperature. It was found that as the heating temperature increases above 300 ℃, the performance decrease becomes larger due to the burning of epoxy. The compressive strength was found to be much lower than the tensile strength, but the modulus of elasticity was found to be the same in tension and compression.

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

Study on the Flame Retardation and Thermal Resistance for CPE Rubber Material Added Etching By-product of Aluminum (알루미늄 엣칭부산물을 첨가한 CPE 고무재료의 난연성 및 내열성 연구)

  • Kim, Kyung Hwan;Lee, Chang Seop
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.341-350
    • /
    • 2001
  • Aluminum Hydroxide was employed as a thermal retardent and flame retardent for Chloropolyethylene (CPE) rubbery materials which is the construction material of automotive oil cooler hose. and then cure characteristics, physical properties, thermal resistance and flame retardation of compounded rubber were investigated, and optimum mixing conditions of rubber and flame retarding agent were deduced from the experimental results. CPE rubber material which has excellent properties of chemical corrosion resistance and cold resistance and inexpensive in price was used to prepare rubber specimen. The by-product of ething, produced from the process of surface treatment of aluminum was processed to aluminum hydroxide via crushing and purification, which is characterized by XRD, PSA, SEM and ICP-AES techniques in terms of phase, size, distribution, morphology and components of particles and then mixed to CPE rubber materials in the range of 0~80 phr. Hardness, tensile strength, elongation and thermal properties of compounded rubber specimens were tested. The optimum mixing ratio of rubber to additives to give maximum effect on thermal resistance and flame retardation, within the range of tolerable specification for rubber materials, was determined to be 40 phr. The flame retardation of CPE rubber materials was found to be increased by 5 times at this mixing ratio.

  • PDF

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Numerical analysis for deformation characteristics under the freezing and bursting of Al pipe (알루미늄 관의 동파 거동특성에 관한 수치적 연구)

  • Choi, Seung-Hyun;Lee, Dong-Won;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4763-4768
    • /
    • 2014
  • Recently, aluminum pipes have been used instead of steel pipes for open and shut machines in vinyl housing because of its corrosion-resistance and light weight. In particular, the light weight is very useful for fitting and removal by human resources. On the other hand, an aluminum pipe is weak in winter because aluminum has a larger thermal expansion coefficient than steel. This study examined the freezing and bursting of aluminum pipes by numerical analysis. The mechanical-thermal deformation characteristics were analyzed under the condition of ice volumetric expansion in aluminum pipes reaching 50%. From numerical analysis, large stresses above the yield stress occurred in aluminum pipe after ice expanded in the net diameter immediately. In addition, the freezing and bursting of aluminum pipes was predicted around an ice volumetric expansion of 6 - 7% because the thickness of the aluminum pipe reached an aluminum elongation ratio of 17%. Therefore, it is recommended that aluminum pipes be sealed perfectly to prevent water flow in the pipe. These results suggest that it is very difficult to prevent freezing and bursting of aluminum pipes by water freezing in the pipe.

Improvement in the Dispersion Stability of Iron Oxide (Magnetite, Fe3O4) Particles with Polymer Dispersant Inject (고분자 분산제 주입을 통한 철산화물(Magnetite, Fe3O4) 입자의 분산 안정성 향상)

  • Song, Geun Dong;Kim, Mun Hwan;Lee, Yong Taek;Maeng, Wan Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.656-662
    • /
    • 2013
  • The iron oxide ($Fe_3O_4$) particles in the coolant of the secondary system of a nuclear power plant reduce the heat transfer performance or induce corrosion on the surface of the heat transfer tube. To prevent these problems, we conducted a study to improve the dispersion stability of iron oxide using polymeric dispersant injection in simulated secondary system water. The three kinds of anionic polymers containing carboxyl groups were selected. The dispersion characteristics of the iron oxide particles with the polymeric dispersants were evaluated by performing a settling test and measuring the transmission, the zeta potential, and the hydrodynamic particle size of the colloid solutions. Polymeric dispersants had a significant impact on the iron oxide dispersion stability in an aqueous solution. While the dispersant injection tended to improve the dispersion stability, the dispersion stability of iron oxide did not increase linearly with an increase in the dispersant concentration. This non-linearity is due to the agglomerations between the iron oxide particles above a critical dispersant concentration. The effect of the dispersant on the dispersion stability improvement was significant when the dispersant concentration ratio (ppm, dispersant/magnetite) was in the range of 0.1 to 0.01. This suggests that the optimization of dispersant concentration is required to maximize the iron oxide removal effect with the dispersant injection considering the applied environments, the iron oxide concentration and the concentration ratio of dispersant to iron oxide.

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Metallurgical study of bronze bells excavated from the Miruksa (temple) site in Iksan (익산 미륵사지 출토 동종의 금속학적 연구)

  • Cho, Nam-chul;Huh, Il-kwon;Kang, Hyung-tae
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.5-22
    • /
    • 2006
  • Mireuksa is a temple that was established in the Baekjea Period and continued around to the 16thcentury. The sites of the temple throughout diverse periods such as the United Shilla Period, KoryuPeriod, and Chosun Period including the one of the early temple in the late Baekjea Period were discovered. In those temple sites, there were lots of diverse artifacts discovered including artifacts in the Bronze Age. In this study, the compositions of four bronze bells excavated from Mireuksa site in Iksan were analyzed and the manufacturing technique of bronze bells was studied through the observation of microstructure. Also, the analytical cases of ancient bronze bells were collected and compared. Furthermore, the provenance study of the bronze bells site was attempted with the Pbisotope ratio. The results aim to offer crucial keys for discovering the aspect of society as well as information about the origin, development, and the route of propagation of ancient technologies. Bronze bell No. 1 showed an unexpected composition as Cu was found 98.5% in it. There were shown twins which were created by annealing and an even phase in the fine grains. It was also shown that bronze bell No. 2 and 4 had a high content of Pb although they showed a similar composition with general bronze bells in terms of Sn content. As shown in the analysis characteristics table of Korean bronze bell of this study, the ancient bronze bell used Pb of which content was limited to 2.12% in general, however, the results showed 15.5% and 13.2% respectively, which is an excessive amount. Asa result of analyzing inclusion in the microstructure of bronze bell No. 2, it was found that sulfide group mineral was used since there appeared S(14.55%). Also, it was proven that $CuFeS_2$ or$Cu_5FeS_4$ was used as a raw material because there was a small amount of Fe. As a result of analyzing inclusion of bronze bell No. 4, the bronze bell sample contained S(13.43%) and it is thought that sulfide group mineral was used, however, it had no Fe. Therefore, it is not connected to $CuFeS_2$ which is the main mineral of Korea. In addition, a strain line was shown with processing in bronze bell No. 2 and 4. As a result of provenance study of bronze bell No. 2 and 4 using the Pb isotope ratio, they or their raw materials are estimated to come from the southern China. Bronze bell No. 3 showed only Cu and Sn, and it is featured with a relatively low amount of Sn(6.63%). The microstructure has only phase, andintergranular corrosion was highly in progress.

  • PDF

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.