• Title/Summary/Keyword: corrosion ratio

Search Result 584, Processing Time 0.032 seconds

Bond Behavior of GFRP Rebars Embedded in Concrete Under Cyclic Loading (반복하중을 받는 GFRP 보강근의 부착특성)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.101-104
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Fiber Reinforced Polymer (FRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of FRP. However, there remain various aspects of FRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between FRP and concrete. In this study, the bond-behavior of FRP bars in concrete is investigated via the pullout test with three varying parameters: surface condition of FRP bars, concrete compression strength, and cyclic loading patterns. As a result of experiment, the bond strength of GFRP increased with the concrete compression strength increasing and decreased with applying cyclic load.

  • PDF

A Experimental Study on the Compressive Capacity of Circular Section Wood using Synthetic Resins (합성수지를 이용한 원형단면 목재의 압축보강 성능에 관한 실험적 연구)

  • Park, Sung-Moo;Park, Kwang-Seob;Kang, Pyeong-Doo;Ha, Jong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 2009
  • As interest in latest cultural heritance is increased, an importance about conservation of dilapidated cultural building asset is risen. Most of cultural building asset used wood by main material and conservation repair about corrosion and damage by deterioration of these cultural building asset considers cultural value of member and the basis principle is the archetype maintenance. Accordingly, conservation processing method that use synthetic is embossed. This paper experimented with reinforcement sectional area ratio, direction of section, length, strength of synthetic resins as variable and manufactures total 14 specimens as experimental study about compression reinforcement performance of circular section wood that strengthen by synthetic resins. The result of this paper has shown that adequate strengthen is more efficient than new member and the most important authenticity in strengthen and repair of cultural heritance can be ensured.

  • PDF

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

Strength and durability of concrete in hot spring environments

  • Chen, How-Ji;Yang, Tsung-Yueh;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • In this paper an experimental study of the influence of hot springs curing upon concrete properties was carried out. The primary variables of the investigation include water-to-binder ratio (W/B), pozzolanic material content and curing condition. Three types of hot springs, in the range $40-90^{\circ}C$, derived from different regions in Taiwan were adopted for laboratory testing of concrete curing. In addition, to compare with the laboratory results, compressive strength and durability of practical concrete were conducted in a tunnel construction site. The experimental results indicate that when concrete comprising pozzolanic materials was cured by a hot spring with high temperature, its compressive strength increased rapidly in the early ages due to high temperature and chloride ions. In the later ages, the trend of strength development decreased obviously and the strength was even lower than that of the standard cured one. The results of durability test show that concrete containing 30-40% Portland cement replacement by pozzolanic materials and with W/B lower than 0.5 was cured in a hot spring environment, then it had sufficient durability to prevent steel corrosion. Similar to the laboratory results, the cast-inplace concrete in a hot spring had a compressive strength growing rapidly at the earlier age and slowly at the later age. The results of electric resistance and permeability tests also show that concrete in a hot spring had higher durability than those cured in air. In addition, there was no neutralization reaction being observed after the 360-day neutralization test. This study demonstrates that the concrete with enough compressive strength and durability is suitable for the cast-in-place structure being used in hot spring areas.

The Influence of the Silica Contents for High Temperature Strength for Single Crystal Casting Mold of Superalloys (초합금 단결정 주조용 주형의 실리카 함량에 따른 고온강도 영향)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Im, Ok-Dong;Jin, Yeong-Hun;Seo, Dong-Lee;Lee, Jae-Hun;Kim, Byeong-Ho;O, Je-Myeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.879-883
    • /
    • 1998
  • In the vacuum casting process for superalloys, molten metal are poured into the heated ceramic mold up to $1000^{\circ}C~1700^{\circ}C$. The mold has to have the high temperature strength during casting and made by hlgh purity alumina. In this sturdy, the mold was made by low purity alumina and changed silica contents intended to have high strength The 7.7wt.% SiOz specimens have 10- 55% higher strength than others in room and high temp. Therefore, the cast mold has been developed in this study for single crystal vacuum cast by controlling the ratio of fused alumina and colloidal silica which are used commercially for conventional casting in industries.

  • PDF

Study on Shearing Properties and Behavior of the Grout-reinforced Underground with ERP Pipes (FRP 그라우팅 보강지반의 전단특성에 관한 연구)

  • 최용기;박종호;권오엽;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.73-81
    • /
    • 2002
  • Nowadays , the grouted-reinforcing method, which is called FRP(Fiberglass-reinforced-plastic) pipe .reinforcing method, has been introduced in the community of pound reinforcements. The resistance to corrosion and chemical attack high strength to weight ratio, and ease of handling make these pipes a better alternative to steels in tunnel. However, to fully utilize FRP pipes as grouted reinforcing members at the face and the crown in tunnel, their mechanical properties and behaviors and the grout-reinforced underground have to be verified. Laboratory shear tests were conducted to evaluate the mechanical properties for FRP pipes, the grout-reinforced members and the grout-reinforced body of FRP pipes. According to the test results, it was observed that FRP pipes play a dominant role in shearing behavior of the grout-reinforced members and that their shearing resistance exerts after the shearing displacement increases to some extent.

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

A Basic Research for the Development of Cleaning Agent for Stone Made Cultural Property (석조 문화재 보존 처리용 세정제 개발에 관한 기초연구)

  • Cho, Heon-young;Xia, Yong-mei
    • Journal of Conservation Science
    • /
    • v.11 no.1 s.14
    • /
    • pp.28-37
    • /
    • 2002
  • The cleaning in conservation treatment of cultural heritage is very important process. For the best conservation treatment of cultural heritage, except having a good detergency, the cleaning agent must be able to keep the heritage from the secondary deposition and re-soiling, damage and etc. In this paper, the dust (lichen, algae, dust, etc.) on the surface of stone made heritage was treated with some kinds of solvents and analyzed with FT-IR to develop a cleaning agent for stone made cultural heritage. And the cleaning ability to the dust and the corrosion ratio to the granite of the cleaning agent was investigated. Nonionic surfactants were good for treatment of stone-made cultural heritage. The reason is that nonionic surfactants are stable in acidic solution, and possess low reactivity with the compound of stone and low possibility to the second contamination, and build up the reactivities of acids and oxidants. A new cleaning agent composed with $H_2O_2/HF/NP-10$ shows a good cleaning ability for the conservation treatment of stone made cultural heritage.

  • PDF

A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine (대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan;Song, Hoyoung;Kim, Giho;Ha, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.