• Title/Summary/Keyword: corrosion ratio

Search Result 583, Processing Time 0.029 seconds

Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution (3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향)

  • Kim, Y.S.;Lim, H.K.;Sohn, Y.I.;Yoo, Y.R.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.

Study on the Retardation Effect of Overload on the Corrosion Fatigue Crack Propagation Al-Alloy used for the Shipbuilding (과하중에 의한 선박용 알루미늄 합금재의 부식피로 파괴지연에 관한 연구)

  • Lim, Uh-Joh;Lee, Jong-Rark;Lee, Jin-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuliding industries such as marine structures, ship and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics which was closed up an important role in mechanical design. In this study, the 5086 Al-alloy was tested by use of rotary bending fatigue tester. The retardation effect of overload on the corrosion fatigue crack propagation in sea environment was quantitatively studied. 1) Retardation effect of corrosion fatigue crack propagation is most eminent when overload ratio is 1.52, overload magnitude corresponds to about 77% and 55% of yield strength and tensile strength respectively. 2) After overload ratio 1.52 was used, retardation of corrosion fatigue crack growth rate is largely retarded and quasi-threshold stress intensity factor range($\Delta\textrm{K}_{th}$) appears. 3) According to m of experimental constant, retardation effect of corrosion fatigue crack propagation corresponds to about 25% of constant stress amplitude when overload ratio is 1.52. 4) When overload ratio 1.52 was used, retardation parameter (RP) decreases to about 0.43 and corrosion sensitivity (S)decreses to about 2.1.

  • PDF

An experimental study on corrosion properties of reinforcing steel under environment of complex deterioration (표면피복종류에 따른 복합열화환경하의 철근콘크리트 부식특성에 관한 실험적 연구)

  • 조봉석;김영덕;윤종기;김재환;김용로;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.86-89
    • /
    • 2003
  • It is recognized that reinforcement corrosion is the main distress behind the present concern regarding concrete durability. In this study, to confirm corrosion of reinforced concrete affected by thickness of cover, kinds of surface coating, measured electric potential, ratio of corrosion area, weight reduction, corrosion velocity of steel bar under environment of complex deterioration. The results showed that an increase in age also increases corrosion of steel bar. Ratio of corrosion area is largely related to ratio of weight reduction. as well, corrosion of steel bar by thickness of cover is superior to l0mm thick than 20mm thick. It showed that an increase in thickness of cover prevent steel bar from deteriorating. The results of this study showed that corrosion velocity was affected by thickness of cover, kinds of surface coating. data on the development of corrosion velocity made with none, organic B, organic A, inorganic B, and inorganic A is shown.

  • PDF

Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti (Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel (3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;안호민;도영문
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

Numerical model for local corrosion of steel reinforcement in reinforced concrete structure

  • Chen, Xuandong;Zhang, Qing;Chen, Ping;Liang, Qiuqun
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.385-393
    • /
    • 2021
  • Reinforcement corrosion is the main cause of the durability failure of reinforced concrete (RC) structure. In this paper, a three-dimensional (3D) numerical model of macro-cell corrosion is established to reveal the corrosion mechanisms of steel reinforcement in RC structure. Modified Direct Iteration Method (MDIM) is employed to solve the system of partial differential equations for reinforcement corrosion. Through the sensitivity analysis of electrochemical parameters, it is found that the average corrosion current density is more sensitive to the change of cathodic Tafel slope and anodic equilibrium potential, compared with the other electrochemical parameters. Furthermore, both the anode-to-cathode (A/C) ratio and the anodic length have significant influences on the average corrosion current density, especially when A/C ratio is less than 0.5 and anodic length is less than 35 mm. More importantly, it is demonstrated that the corrosion rate of semi-circumferential corrosion is much larger than that of circumferential corrosion for the same A/C ratio value. The simulation results can give a unique insight into understanding the detailed electrochemical corrosion processes of steel reinforcement in RC structure for application in service life prediction of RC structures in actual civil engineer.

Effect of Corrosion Inhibitor for Reinforcing Steel in Concrete Containing Chlorides (염화물을 함유한 콘크리트 중의 철근방식을 위한 방청제의 효과)

  • 문한영;김성수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.325-333
    • /
    • 1998
  • Under the seawater environment, the reinforced concrete structure is deteriorated due to physical and chemical attacks. The main deterioration mechanism is the chloride corrosion of reinforcing steel. The corrosion inhibitors have been used to protect the rebars from corrosion which are susceptible to chlorides in concrete. However, there is not clear conclusion about corrosion inhibitors yet. In this study, it is made the accelerated experiment with 3 kinds of corrosion inhibitors for various chloride ingresses. It is estimated corrosion inhibitors that inhibitors by Half-Cell Potential, corrosion area ratio and weight loss ratio. It is concluded that inhibitors are not effective to corrosion inhibition for excessive chloride ingress. However, the effect of inhibition is directly proportional ot contents of corrosion inhibitors in some chloride ingress.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

The effects of overlapping ratio on surface properties in laser cladding (레이저 클래딩 중첩도가 표면특성에 미치는 영향)

  • 이제훈;서무홍;한유희
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • A 4㎾ RS840 CO2 laser with a powder auto-feeding apparatus has been used to deposit multiple overlapping tracks of Ni-base superalloy on to low carbon steel. It was found that the surface roughness(turbulence) of an overlapped cladding layer decreased with the increase of the overlapping ratio in an oscillating manner. When the overlapping ratio had values of 0.62, the surface turbulence was lowest. Overlapping ratio offer significant potential for improvement of materials surface properties such as corrosion performance and wear resistance. This paper reports that the overlapping ratio shows best corrosion resistance. The tensile residual stresses generated at the higher overlapping ratio( > 0.45) and the element concentration of Fe increased in the surface layer at the lower overlapping ratio( < 0.45) may lead to worse corrosion resistance.

  • PDF