• Title/Summary/Keyword: corrosion product

Search Result 216, Processing Time 0.027 seconds

Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer

  • Kainuma, Shigenobu;Yamamoto, Yuya;Ahn, Jin-Hee;Jeong, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.191-201
    • /
    • 2018
  • The corrosion environments in a steel structure are significantly different depending on the individual parts of the members. To ensure the safety of weathering steel structures, it is important to evaluate the time-dependent corrosion behavior. Thus, the progress and effect of corrosion damage on weathering steel members should be evaluated; however, the predicted corrosion depth, which is affected by the corrosion environment, has not been sufficiently considered until now. In this study, the time-dependent thicknesses of the corrosion product layer were examined to quantifiably investigate and determine the corrosion depth of the corroded surface according to the exposure periods and corrosion environments. Thus, their atmospheric exposure tests were carried out for 4 years under different corrosion environments. The relationship between the thickness of the corrosion product layers and mean corrosion depth was examined based on the corrosion environment. Thus, the micro corrosion environments on the skyward and groundward surfaces of the specimens were monitored using atmospheric corrosion monitor sensors. In addition, the evaluated mean corrosion depth was calculated based on the thickness of the corrosion product layer in an atmospheric corrosion environment, and was verified through a comparison with the measured mean corrosion depth.

Experimental Study of Removing Surface Corrosion Products from Archaeological Iron Objects and Alternating Iron Corrosion Products by Nd:YAG Laser Cleaning System (Nd:YAG 레이저를 이용한 철제유물의 표면부식물 제거 및 성분 변화 연구)

  • Lee, Hye Youn;Cho, Nam Chul;Lee, Jong Myoung;Yu, Jae Eun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.353-360
    • /
    • 2012
  • The corrosion product of archaeological iron objects is supposed to be removed because it causes re-corrosion. So far it is removed by scapel and sand blaster but they depend on the skill and experience of a conservator and the glass-dust of the sand blaster is harmful to humans. Therefore this study applies a laser cleaning system which is used in various industrial cleaning processes, to remove corrosion product from archaeological iron objects. In addition, this work studies the alternation of corrosion product after laser irradiation, which evaluates the reliability of the laser cleaning system. Optical microscopy, SEM-EDS, XRD, Raman have been used to observe and analyse the surface of the objects. The results show the capacity of laser cleaning some corrosion product, but blackening appears with increasing pulses and laser energy, and some corrosion products, goethite and hematite, are partially altered to magnetite. These problems, blackening and alternation of corrosion product, should be solved by further studies which find the optimal laser irradiation condition and use a wetting agent.

Spectral Analysis of $CO_2$ Corrosion Product Scales on 13Cr Tubing Steel

  • Lin, Guan-fa;Xu, Xun-yuan;Bai, Zhen-quan;Feng, Yao-rong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 2008
  • $CO_2$ corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated $CO_2$ corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of $FeCO_3$, and the inner layer is composed of compact fine $FeCO_3$ crystals and amorphous $Cr(OH)_3$. Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in $CO_2$ corrosion environment.

Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

  • Tran, Thi Ngoc Lan;Nguyen, Thi Thanh Binh;Nguyen, Nhi Tru;Yoshino, Tsujino;Yasuki, Maeda
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time.

Corrosion Behaviour of Some Alloys in Tropical Urban and Marine Atmospheres

  • Dang, Vu Ngoan;Bui, Ba Xuan;Nguyen, Nhi Tru
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Results of corrosion testing for different grades of titanium, copper, zinc, alluminium alloys and steels after two years of outdoor exposure under humid tropical urban and marine conditions have been presented and discussed. Mass loss and corrosion product characteristics for the exposed specimens at Hanoi testing site with high humidity and Nhatrang marine stations (at 100 and 1,000 meters distances from sea) with different airborne salinities (35.9 and $90.0mg/m^2.d$ respectively) have been selected for investigation. From time dependence of the specimen mass loss and corrosion product characteristics, the strong influence of environmental parameters upon durability for the investigated metals and alloys has been demonstrated. Only titanium alloys show high resistance to the marine conditions. All the other specimens (copper, zinc, alluminium alloys and steels) have been underwent strong deterioration under influence of aerosol salinity. Results of corrosion products analysis have been also presented for characterization of environmental impact on the metal degradation processes.

Galvanic Corrosion between Carbon Steel 1018 and Alloy 600 in Crevice with Boric Acid Solution

  • Kim, Dong Jin;Macdonald, Digby D.;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.75-80
    • /
    • 2005
  • This work dealt with the evaluation of galvanic corrosion rate in a corrosion cell having annular gap of 0.5 mm between carbon steel 1018 and alloy 600 as a function of temperature and boron concentration. Temperature and boron concentration were ranged from 110 to 300 $^{\circ}C$ and 2000~10000 ppm, respectively. After the operating temperature of the corrosion cell where the electrolyte was injected was attained at setting temperature, galvanic coupling was made and at the same time galvanic current was measured. The galvanic corrosion rate decreased with time, which was described by corrosion product such as protective film as well as boric acid deposit formed on the carbon steel with time. From the galvanic current obtained as a function of temperature and boron concentration, it was found that the galvanic corrosion rate decreased with temperaturewhilethe corrosionrate increasedwith boronconcentration. The experimental resultsobtained from galvanic corrosion measurement were explained by adhesive property of corrosion product such as protective film, boric acid deposit formed on the carbon steel wall and dehydration of boric acid to be slightlysolubleboric acid phase.Moreoverthe galvaniccorrosionrate calculatedusing initialgalvaniccoupling current instead of steady state coupling current was remarked, which could give us relatively closer galvanic corrosion rate to real pressurized water reactor.

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

Investigation of some Natural Product Extracts as Corrosion Inhibitors for Mild Steel in Acid Mediu

  • Subramania, A.;Sathiya Priya, A.R.;Saravanan, S.;Abdul Nasser, A.J.;Vasudevan, T.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.231-235
    • /
    • 2005
  • The inhibitive effect of extracts of tamarind seeds and jackfruit seeds, curry leaves and henna leaves on corrosion of mild steel in 1M HCl solution have been studied by weight loss, potentiodynamic polarization and impedance measurements. Results obtained from the electrochemical techniques were in good agreement with weight loss results. From the weight loss data, the values of surface coverage ($\Theta$) and corrosion rate were calculated. The inhibition efficiency (IE) increased with increasing inhibitor concentration in 1M HCl solution. In all the cases the adsorption of the natural product extracts on the mild steel surface from 1M HCl follows the Langmuir adsorption isotherm relationship. Potentiodynamic polarization studies reveal the fact that all the four natural product extracts act as mixed type inhibitors. The decrease in the inhibition efficiency follows the order: Extracts of jackfruit seed>henna leaves>curry leaves>tamarind seed.

Effects of Surface Roughness on Atmospheric Corrosion of Galvanized Steel Sheets (아연도금 강판의 대기부식에 미치는 표면 거칠기의 영향)

  • 안진호;강성군;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.307-316
    • /
    • 1998
  • The effects of surface roughness on chromate conversion coating and the corrosion behavior of galvanized steel sheets were investigated. Surface roughness was differently given to the galvanized steel sheets tested and these were then chromated. Accelerated corrosion test was conducted under the condition of $30^{\circ}C$, 90%RH with flowing 200ppm $SO_2$ gas. The galvanized steels were also exposed to urban environment for 5 weeks. The corrosion rates were measured by weight gain method. The distribution of chromate film and corrosion product on the coating were examined which SEM/EDS. The chromate film formed preferentially at the convex sites rather than at the concave sites on the surface. The corrosion products were found at the concave sites where the chromate film formed rarely. The corrosion product on the coating were found at the concave sites where the chromate film formed rarely. The corrosion rates increased slightly with the surface roughness in accelerated corrosion test but significantly in field test.

  • PDF

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.