Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

  • Tran, Thi Ngoc Lan (College of Natural Sciences, Vietnam National University-Ho Chi Minh City (VNU-HCM)) ;
  • Nguyen, Thi Thanh Binh (College of Natural Sciences, Vietnam National University-Ho Chi Minh City (VNU-HCM)) ;
  • Nguyen, Nhi Tru (Vietnam Institute for Tropical Technology & Environmental Protection (VITTEP)) ;
  • Yoshino, Tsujino (Environmental Pollution Control Centre) ;
  • Yasuki, Maeda (Osaka Prefecture University)
  • Published : 2008.04.01

Abstract

Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time.

Keywords

Acknowledgement

Supported by : The Japan Society for Promotion of Science

References

  1. C. Leygraf, T. Graedel, Atmospheric corrosion, p.102, A John Wiley & Sons (2000)
  2. J. Itoh, T. Sasaki, M. Seo, and T. Ishikawa, Corros. Sci. 39, 193 (1997) https://doi.org/10.1016/S0010-938X(97)89249-9
  3. J. Itoh, T. Sasaki, T. Ohtsuka, and M. Osawa, J. Electro. Chem. 473, 256 (1999) https://doi.org/10.1016/S0022-0728(99)00157-6
  4. T. Aastrup, M. Wadsak, M. Schreiner, and C. Leygraf, Corros. Sci. 42, 957 (2000) https://doi.org/10.1016/S0010-938X(99)00125-0
  5. A. Stoch, J. Stoch, J. Gurbiel, M. Cichocinska, M. Mikolajczyk, and M. Timler, J. Mol. Struc. 596, 201 (2001) https://doi.org/10.1016/S0022-2860(01)00718-9
  6. I. O. Wallinder and C. Leygraf, Corros. Sci. 43, 2379 (2001) https://doi.org/10.1016/S0010-938X(01)00021-X
  7. K. Nassau, P. K. Gallagher, A. E. Miller, and T. E. Graedel, Corros. Sci. 27, 669 (1987) https://doi.org/10.1016/0010-938X(87)90049-7
  8. R. L. Opila, Corros. Sci. 27, 685 (1987) https://doi.org/10.1016/0010-938X(87)90050-3
  9. T. E. Graedel, K. Nassau, and J. P. Franey, Corros. Sci. 27, 639 (1987) https://doi.org/10.1016/0010-938X(87)90047-3
  10. C. Karlen, I. Odnevall Wallinder, D. Heijerick, and C. Leygraf, Environ. Pollut. 120, 691 (2002) https://doi.org/10.1016/S0269-7491(02)00179-3
  11. R. Mendoza, F. Corvo, A. Gomez, and J. Gomez, Corros. Sci. 46, 1189 (2004) https://doi.org/10.1016/j.corsci.2003.09.014
  12. Kratschmer, I. Odnevall Wallinder, and C. Leygraf. Corros. Sci. 44, 425 (2002) https://doi.org/10.1016/S0010-938X(01)00081-6
  13. M. Morcillo, E. Almeida, M. Marrocos, and B. Rosales, Corros. 57, 967 (2001) https://doi.org/10.5006/1.3290321
  14. A. R. Mendoza and F. Corvo, Corros. Sci. 42, 1123 (2000) https://doi.org/10.1016/S0010-938X(99)00135-3
  15. Y. Maeda, J. Morioka, Y. Tsujino, Y. Satoh, X. Zhang, T. Mizoguchi, and S. Hatakeyama, Water, Air, Soil Pollution 130, 141 (2001) https://doi.org/10.1023/A:1012263822014
  16. T. Aastrup, M. Wadsak, M. Schreiner, and C. Leygraf, Corros. Sci. 42, 957 (2000) https://doi.org/10.1016/S0010-938X(99)00125-0
  17. S. Graff-Iversen, A. Tverdal, I. Stensvold, J. Tidblad, and T. E. Graedel, Corros. Sci. 38, 2201 (1996) https://doi.org/10.1016/S0010-938X(96)00082-0
  18. T. Shimohara and K. Murano, Sci. of Total Environ. 198, 287 (1977)
  19. P. Ravinder, V. Shatrugna, K. M. Nair, B. Oesch, S. Sivakumar, and M. Faller, Corros. Sci. 39, 1505 (1997) https://doi.org/10.1016/S0010-938X(97)00047-4
  20. B. Rosales, R. Vera, and G. Moriena, Corros. Sci. 41, 625 (1999) https://doi.org/10.1016/S0010-938X(98)00108-5
  21. J. Itoh, T. Sasaki, and T. Ohtsuka, Corros. Sci. 42, 1539 (2000) https://doi.org/10.1016/S0010-938X(00)00015-9
  22. H. Strandberg, Atmos. Environ. 32, 3521 (1998) https://doi.org/10.1016/S1352-2310(98)00058-2
  23. L. Veleva, P. Quintana, R. Ramanauskas, R. Pomes, and L. Maldonado, Electroc. Acta 41, 1641 (1996) https://doi.org/10.1016/0013-4686(95)00417-3
  24. J. D. Nairn, S. G. Skennerton, and A. Atrens. J. Mater. Sci. 38, 995 (2003) https://doi.org/10.1023/A:1022337511592
  25. M. Watanabe, Y. Higashi and T. Tanaka, Corros. Sci. 45, 1439 (2003) https://doi.org/10.1016/S0010-938X(02)00245-7