• 제목/요약/키워드: corrosion pits

검색결과 66건 처리시간 0.019초

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

  • Zhang, D.Q.;Shi, C.;Li, J.;Gao, L.X.;Lee, K.Y.
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.8-14
    • /
    • 2017
  • The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

Hardness and Corrosion Resistance of Surface Composites Fabricated with Fe-based Metamorphic Powders by High-energy Electron Beam Irradiation

  • Nam, Dukhyun;Lee, Kyuhong;Lee, Sunghak;Young, Kyoo
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.301-306
    • /
    • 2008
  • Surface composite layers of 1.9~2.9 mm in thickness were fabricated by depositing metamorphic powders on a carbon steel substrate and by irradiating with a high-energy electron beam. In the surface composite layers, 48~64 vol.% of $Cr_{2}B$ or $Cr_{1.65}Fe_{0.35}B_{0.96}$ borides were densely precipitated in the austenite or martensite matrix. These hard borides improved the hardness of the surface composite layer. According to the otentiodynamic polarization test results of the surface composites, coatings, STS304 stainless steel, and carbon steel substrate, the corrosion potential of the surface composite fabricated with 'C+' powders was highest, and its corrosion current density was lowest, while its pitting potential was similar to that of the STS304 steel. This indicated that the overall corrosion resistance of the surface composite fabricated with 'C+' powders was the best among the tested materials. Austenite and martensite phases of the surface composites and coatings was selectively corroded, while borides were retained inside pits. In the coating fabricated with 'C+' powders, the localized corrosion additionally occurred along splat boundaries, and thus the corrosion resistance of the coating was worse than that of the surface composite.

Microbiologically Induced Corrosion of Three Tubular Materials

  • Mukadam, S.;Al-Hashem, A.
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.267-272
    • /
    • 2015
  • The performance of three tubular materials (C-90, L-80, and N-80) was evaluated in a synthetic brine inoculated with sulfate-reducing bacteria (SRB) in the absence and presence of biocides. A flow loop was used in the evaluation of the three alloys. Morphological examination of the alloy surfaces after exposure to SRB and after biocide treatment was performed by scanning electron microscopy (SEM) to determine the nature of any localized corrosion. The SE images of the coupon samples showed a marked difference between the biocide-treated and untreated samples. Small pits were observed on the ultrasonically cleaned surfaces of the three alloys after exposure to SRB. The biocide treatment reduced the number of SRB on the surfaces of the alloys. Results indicated that C-90 and L-80 alloys exhibited better MIC resistance than N-80 under the conditions used in this study.

염산용액내에 황산 첨가에 의한 알루미늄의 교류에칭 특성 (Effect of Sulfuric Acid Addition on the Aluminum AC Etching in HCl Solution)

  • 김행영;최진섭;탁용석
    • 공업화학
    • /
    • 제9권4호
    • /
    • pp.463-468
    • /
    • 1998
  • 알루미늄의 부식에 있어서 HCI 용액내에 황산을 첨가하는 경우 황산이온의 화학적 흡착에 의한 부식억제 효과가 나타나며, CV (cyclic voltammetry) 실험결과 황산이온은 핏트내부에 보호성 산화피막을 생성함으로서 에치핏트가 핏트내부와 알루미늄 표면에 함께 생성되어 핏트의 밀도가 증가하였다. 알루미늄 교류에칭시에 핏트분포는 황산이온의 농도와 환원전류량에 의하여 크게 영향을 받으며, 환원전류인가시 $0.8mC/cm^2$ 이하의 전하량에서 핏트내부에 생성된 산화피막은 황산이온 농도의 증가에 따라 핏트발생에 대한 저항성이 중가하였으나, $0.8mC/cm^2$ 이상에서는 산화피막내에 국부적인 구조변화가 발생하며 황산이온 농도에 관계없이 산화피막의 파괴가 빠르게 진행되었다.

  • PDF

Study on Corrosion Characteristics and Stress Corrosion Cracking of the Weldment for HT-60 Steel in Synthetic Seawater

  • Na, Eui-Gyun;Koh, Seung-Ki;Oh, Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.152-158
    • /
    • 2000
  • The contents of this paper include the evaluation of corrosion characteristics and the behaviour of stress corrosion cracking (SCC) for the weldment and post weld heat treatment (PWHT) specimen and parent of HT -60 steel using a slow strain rate test (SSRT) in synthetic seawater. Corrosion characteristics were obtained from the polarization curves by potentiostat, and SCC phenomena were evaluated through the parameters such as reduction of area and time to failure by comparing the experimental results in corrosive environment with those obtained in air. Corrosion rate of the weldment was the fastest, followed by parent and PWHT specimen. SCC phenomena between the weldment of HT-60 steel and synthetic seawater were shown. Besides, SCC was dependent upon the pulling speed greatly. Maximum severity of SCC was obtained at a speed of $10^{-6}mm/min$, whereas SCC could not be seen almost at $10^{-4}mm/min$. The resistance to SCC for PWHT specimen was improved considerably compared that of the weldment at $10^{-6}mm/min$. In case of SCC failure, it was verified from SEM examination that brittle mode and lots of pits could be seen at the fractured region near the surface of the specimen.

  • PDF

12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성 (Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel)

  • 조선영;김철한;배동호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향 (Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution)

  • 김은실;김원기;최한철
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

배열회수보일러 복수예열기 부식 파손 분석 (Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator)

  • 채호병;김우철;김희산;김정구;김경민;이수열
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.