• 제목/요약/키워드: corrosion of steel bar

검색결과 141건 처리시간 0.024초

철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구 (Influence of Loading on the Corrosion of Reinforcing Bar)

  • 김형래;윤상천;지남용
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.

모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향 (Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5))

  • 문경만;이성열;정진아;이명훈;백태실
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

매시브한 해양구조물 적용을 위한 고로슬래그 혼입 콘크리트의 방청성능 평가에 관한 연구 (A Study on the Estimation of Corrosion Protection Performance of Concrete Containing Ground Granulated Blast-Furnace Slag for Massive Coastal Structures)

  • 유재강;김동석;박상준;원철;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.87-91
    • /
    • 2002
  • This paper investigates the corrosion inhibition and the reduction of hydration heat properties of Ground Granulated Blast-Furnace Slag (GGBFS) added concrete. Since the massive civil structure is vulnerable to the thermal crack by hydration. adiabatic temperature rising tests were performed for water-binder ratios from 43.2% to 47.3%, while replacing 15% to 50% of cement with GGBFS of equal weight. Then, the corrosion protection performance was evaluated using cylindrical specimens embedded with steel reinforcement according to the combination of 3 W/B ratios and 2 levels of chloride ion quantity. The corrosion area of the embedded steel ban was determined using the high pressure steam curing method specified in KS F 2561. The test results showed that the replacement of GGBFS was effective in reducing the hydration heat. The corrosion area of the embedded steel ban decreased as the replacement of GGBFS increased. However, the corrosion area of the steel bar was proportional to the autoclave cycle and the chloride ion quantity. Among the tested specimens, compressive strength, reduction of hydration heat, and corrosion inhibition performance were excellent when 50% of cement was replaced with GGBFS of equal weight.

  • PDF

용사 코팅된 스틸바의 트라이볼로지적 특성의 형상학적 관찰 (Morphological Observation on Tribological Characteristic of Thermal Spray Coated Steel-Bar)

  • 이덕규;조희근
    • 대한기계학회논문집A
    • /
    • 제38권5호
    • /
    • pp.559-566
    • /
    • 2014
  • 제철공장의 소결대차 스틸바의 내열성, 내마모성, 내부식성 등의 성질을 향상시키기 위하여 용사코팅을 적용한 연구가 진행되었다. 약 $700^{\circ}C$의 고온환경에서 내열, 내마모, 부식 등에 노출되어 있는 스틸의 표면에 $Al_2O_3$, $Cr_2O_3$, WC 코팅을 적용하여 국부적으로 고온내마모성, 내식성, 내열성, 내열충격성 등을 향상시킴으로써 기존 제강공정에서 사용되는 스틸바의 수명을 향상시켰다. 스틸바에 적용한 금속용사 코팅층에 대하여 고온내마모시험, 열충격시험, 내부식시험을 수행하였다. 코팅층의 물리적, 화학적, 기계적 특성이 코팅이 안된 재료에 비해 매우 우수하였다.

콘크리트 층간비저항에 의한 철근의 부식환경 평가에 관한 연구 (A Study on the Evaluation of the Corrosive Environment of Reinforcement Bar by Concrete Layer Resistivity)

  • 임영철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.43-44
    • /
    • 2012
  • Deterioration factors such as CO2 and chloride ions cause steel corrosion in RC structures. The diffusion of these factors depends on the water content in concrete. To examine the moisture condition of concrete, this research considers the availability of the steel effect ratio, which is calculated by Resistivity Estimation Model (REM). It is concluded that the steel effect ratio is expected to be available as a quantitative evaluation method in the assessment of concrete layer resistivity.

  • PDF

염화물이 철근콘크리트의 부식에 미치는 영향 (The Effect of Chloride on the Corrosion of Reinforced Concrete)

  • 김정섭;신용석;이설;김광석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.147-154
    • /
    • 2005
  • 부식면적에 기준으로 살펴보면, 염화물이온 함유량이 증가할수록, 재령이 증가할수록 부식면적이 증가하는 것으로 나타났다. 특히 염화물이온 함유량이 $3kg/m^3$에서 $7kg/m^3$로 증가할때, 재령일이 730일에서 1035일로 증가할때 부식면적 증가 기울기가 큰 것으로 나타났다. 방청 시험체에 비해 무방청 시험체에서 약 8~35배정도 많은 부식면적을 나타내어 방청제 도포에 의한 부식방지에 효과를 확인할 수 있었다. 염화물이온을 함유하지 않은 경우 피복두께 증가에 따른 철근의 부식제어효과를 나타내었으나 염화물 이온을 함유한 시험체에서는 염화물 역확산, 시험오차 등의 복합적인 문제로 피복두께와 부식의 일정한 경향을 볼 수 없었다.

Corrosion Prediction of Metallic Cultural Heritage Assets by EIS

  • Angelini, E.;Grassini, S.;Parvis, M.;Zucchi, F.
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.121-128
    • /
    • 2019
  • Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions.

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

용사 코팅된 그레이트바의 고온 내마모 특성 평가 (Evaluation of High Temperature Abrasion Resistance of Spray-Coated Grate Bar)

  • 조희근;안진효
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.55-62
    • /
    • 2017
  • The grate bar, a component used in steel mills, is used in harsh environments where external disturbances such as high temperature, abrasion, corrosion, and impacts are present. Therefore, in this study, spray-coating was performed on the most severely affected surface to extend the lifetime of the grate bar. The thermal and mechanical properties of the sprayed coated bars were investigated based on the performances under abrasion, thermal shock, tension, and sand blasting, and the microstructures by microscope. By analyzing the thermal and mechanical properties of the uncoated original grate bar and coated grate bar and comparing them with one another, the physical performance improvement of the coated grate bar can be verified.