• 제목/요약/키워드: corrosion of rebar

검색결과 242건 처리시간 0.023초

철근 콘크리트의 Zwitterion 및 인산염 기반 하이브리드 부식 억제제: 염화물 임계값 및 사용 수명 결정 (Hybrid Corrosion Inhibitor-Based Zwitterions and Phosphate in Reinforced Concrete: Determining Chloride Threshold and Service Life)

  • 트란 득 탄;정민구;이한승;양현민;싱 지텐드라 쿠마
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2023
  • Corrosion of reinforcement steel is a major cause of deterioration in reinforced concrete (RC) structures. In order to protect these structures from corrosion, corrosion inhibitors are added to the concrete mix. In recent years, zwitterionic compounds have shown promising results as corrosion inhibitors in concrete due to their ability to form a protective layer on the surface of the reinforcement steel. The experimental study involves preparing concrete samples with different concentrations of adding the hybrid corrosion inhibitor at a high concentration of chloride ions. This study aims to determine the chloride threshold value and service life of hybrid corrosion inhibitors in reinforced concrete based on zwitterions. The samples are subjected to accelerated corrosion tests in a chloride environment to determine the threshold value and service life of the corrosion inhibitor. The effect of hybrid inhibitor on mechanical properties is guaranteed in allowable range. The chloride threshold concentration and service life of hybrid inhibitor containing samples perform greater than those of plain RC.

  • PDF

Enhanced Classical Tafel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non-Linear Effect of Temperature

  • Hussain, Raja Rizwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.71-75
    • /
    • 2010
  • The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non-linear effect of temperature on corrosion of rebar embedded in concrete.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

해양골재로 제작한 철근 콘크리트의 부식특성 (Corrosion Characteristics of Reinforcement Concrete made by Marine Aggregate)

  • 남진각;정진아;문경만;이명훈;김기준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.217-222
    • /
    • 1998
  • In these days, mostof marine structures are constructed by reinforcement concrete due to economic reason. Theoretically, it is widely recognized that rebar in sound concrete is safe against corrosion because of the high alkalinity of concrete. However, corrosion for reinforcement concrete made by marine aggregate and exposed to ocean enviroments has become serious social problem. Especially in Korea, with the rapid economic growth construction activities have been accelerated and needed more natural aggregate. Therefore, inevitably marine aggregate had to be used due to limitation of good quality aggregate. In this study, as a part of efforts to establish the fundamental counterplan on corrosion problems related to marine aggregate, concrete specimens with chloride containing material and inhibitor have been studied. And, in order to analyze corrosion characteristics several electrochemical techniques including half-cell potential survery, linear and cyclic polarization tests were carried out.

  • PDF

희생양극법을 이용한 콘크리트중의 철근부식 억제 효과에 대한 연구 (A Study on the Rebar Corrosion Control in Concrete by Using the Sacrificial Anode Cathodic Protection)

  • 문한영;김성수;김홍삼;김성섬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.299-302
    • /
    • 1997
  • Generally the corrosion expansion of the steel due to outdoor corrosive environmental factor brings about serious problem on the durability of concrete structures. It is the purpose of this study to see whether adapted sacrificial anode method is effective or not. from the experimental results. the potential of steel in concrete in case of adapting the sacrificial anode method satisfies protection standard value (less than -850mV vs CSE).

  • PDF

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

아연코팅 철근콘크리트 보의 휨 거동 실험 연구 (An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar)

  • 양인환;김경철
    • 콘크리트학회논문집
    • /
    • 제26권3호
    • /
    • pp.299-306
    • /
    • 2014
  • 콘크리트 구조물의 철근 부식 문제를 해결하기 위하여 코팅철근이 사용된다. 에폭시 코팅 철근에 비해 아연코팅철근의 콘크리트 보의 휨 거동 영향에 대한 자료는 거의 없는 실정이다. 이 연구의 목적은 아연코팅철근이 콘크리트 보의 휨 거동에 미치는 영향을 파악하는 데 있다. 아연코팅철근을 사용한 부재와 일반철근을 사용한 부재의 구조실험을 통하여 휨 거동 특성을 비교하였다. 실험변수로써 철근의 아연코팅 유무, 사용 철근비와 피복 두께를 고려하였다. 아연코팅철근 콘크리트 보의 균열패턴, 균열폭, 처짐 및 변형률 특성을 파악하였다. 아연코팅철근 콘크리트 보의 휨강도는 일반철근 콘크리트 보의 휨강도와 거의 차이가 나지 않는다. 철근표면의 아연코팅은 처짐, 균열폭 비교 결과에도 뚜렷한 영향을 미치지 않는다. 또한, 아연코팅철근 보와 일반철근 보의 하중-변형률 곡선은 비슷한 결과를 나타낸다. 따라서, 전반적으로 아연코팅철근의 사용은 일반철근을 사용할 때에 비해 콘크리트 보의 휨 거동에 악영향을 미치지는 않는 것으로 나타난다.

GFRP로 보강된 순환골재콘크리트 블록의 성능평가 (Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP)

  • 김용재;이현기;박철우;심종성
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6565-6574
    • /
    • 2013
  • 세굴방지, 하천사면보호, 하상구조물보호 등을 위해 국내에서는 프리캐스트 콘크리트 블록이 주로 사용되고 있다. 그러나 이러한 콘크리트 블록은 항상 물 또는 습윤한 환경에 접하게 되므로 내부보강재로 사용된 철근에 부식이 발생될 확률이 높으며 이로 인해 블록의 성능과 내구성이 크게 감소될 수 있다. 따라서 본 연구에서는 내부보강재를 GFRP 보강근으로 대체하여 철근부식에 따른 성능저하문제를 근본적으로 해결하고자 하였으며, 콘크리트 블록에 사용되는 콘크리트에는 순환골재와 조강시멘트를 적용하여 현장적용성을 높이고자 하였다. 실험결과 조강시멘트를 사용한 순환골재콘크리트는 기존 콘크리트에 비해 작업성과 탈형강도는 유사하였으며, 재령 28일 압축강도는 약 18% 증가되었다. 하중저항성능을 측정한 결과, GFRP 보강근이 적용된 순환골재콘크리트 블록은 기존 콘크리트 블록에 비해 약 10~30%의 하중저항성능이 향상되는 것으로 측정되었다.

Influence of polyvinylpyrrolidone on rebar corrosion in sulphate solution

  • Gurten, A. Ali;Bayol, Emel;Kayakirilmaz, Kadriye;Erbil, Mehmet
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.77-87
    • /
    • 2009
  • This paper reports the results of an experimental investigation of the polyvinylpyrrolidone (PVP) influence on the steel reinforcement corrosion and compressive strength of concretes in sulphate medium. The effect of admixture of PVP in concrete on the corrosion resistance of steel reinforced concrete was assessed by measuring electrochemical test during 60 days immersion in two different external solutions. AC impedance spectrum indicated that the resistance of PVP mixed electrodes were higher than those without PVP. The compressive strength of concrete specimens containing PVP was measured and an increase of 19%~24% was observed.

ADVANCES IN DESIGN AND RESIDUAL LIFE CALCULATION WITH REGARD TO REBAR CORROSION OF REINFORCED CONCRETE

  • C. Andrade;D. Izquierdo;J. Rodriguez;L Ortega
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.15-30
    • /
    • 2005
  • The increasing amount of structures presenting distress due to reinforcement corrosion is urging the establishment of more accurate calculation methods for the service life of concrete structures. In the present paper, a summary of the different approaches is presented that are able to calculate the expected life of new structures, in certain aggressive environments or the residual life of already corroding structures. The methods for the initiation period are based on the proper calculation of the carbonation front or chloride penetration and on the steel corrosion rate. The methods for the residual load-bearing capacity calculations are based in the use of ' indicators ' or in the evaluation of the reduced section and a structural recalculation.

  • PDF