• 제목/요약/키워드: corrosion initiation

검색결과 188건 처리시간 0.024초

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • 제18권2호
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

원전 1차 계통수 모사환경에서 Type 304 스테인리스강의 응력부식균열개시 민감도 (Susceptibility of Stress Corrosion Crack Initiation of Type 304 SS in Simulated Primary Water Environment of PWR)

  • 조성환;김성우;이종연
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.25-31
    • /
    • 2024
  • The core shroud of rector vessel internals (RVI) of OPR1000 and ARP1400 is made of Type 304 stainless steel (SS) by bending and welding process that may induce high deformation and residual stress in manufacturing. This work aims to evaluate the susceptibility of stress corrosion crack (SCC) initiation of bent parts of RVI in high temperature primary water environment. For SCC initiation test, tensile specimens were fabricated from the 90 degree bent plate of Type 304 SS (DT specimen), that is an archived part of a Korean APR1400. After the SCC initiation test, the specimen surface was thoroughly examined by optical and scanning electron microscopy, and compared to the specimen fabricated from the as-received plate of Type 304 SS (AR specimen). The surface observation revealed that SCC initiated on the AR specimen surface in typical intergranular (IG) mode, while SCC on the DT specimen occurred in transgrannular mode as well as IG mode. It was also found that the size and number of SCC on the DT specimen were larger than that on the AR specimen. This was attributable to a strain-hardening during the bending process. To compare the susceptibility of SCC initiation, total crack density (TCD) was calculated from the total crack length divided by the measured area of AR and DT specimens. TCD of DT specimen was 4.6 times higher than AR specimen in average, indicating that higher possibility of degradation of bent parts of RVI for a long-term operation.

지중 환경하에서의 철근콘크리트 구조물의 부식 특성 연구 (A Study on Corrosion Properties of Reinforced Concrete Structures in Subsurface Environment)

  • 권기정;정해룡;박주완
    • 지질공학
    • /
    • 제26권1호
    • /
    • pp.79-85
    • /
    • 2016
  • 방사성폐기물 처분시설 공학적방벽을 구성하는 콘크리트는 주변 환경의 영향으로 내구 수명에 영향을 받게 된다. 현재까지 개발된 수치해석 모델 및 실험을 통하여 방사성폐기물 처분시설 공학적방벽 소재로 가장 널리 사용되는 콘크리트에 대해 주변환경을 고려하여 그 영향을 살펴보았다. 본 연구에 해당하는 철근 콘크리트 구조물은 지리적으로 해안과 인접한 지하수 포화대에 위치하고 있다. 일반적인 철근콘크리트 구조물의 가장 민감한 열화인자인 염해에 의한 철근부식에 대한 영향을 염화물 확산모델을 이용하여 평가한 결과 철근 부식 개시기간이 1,284년이며, 최종적으로 구조물이 내구수명을 상실하는데 도달하는 시간은 1,924년인 것으로 예측되었다. 또한, Mock-up 실험을 통해 공극분포, 공극률, 부식정도 등 물리화학적 특성을 평가한 결과 콘크리트 내 철근 부식정도는 미비한 것으로 나타나 500년 이상의 상당히 오랜 기간 건전성을 유지할 수 있는 것으로 판단된다.

부식된 얇은 원통 압력용기의 파손 거동 해석 (Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion)

  • 윤자문;최문오;안석환;남기우;안등 주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF

철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구 (Influence of Loading on the Corrosion of Reinforcing Bar)

  • 김형래;윤상천;지남용
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.

부식을 고려한 콘크리트 교량의 최대 균열폭 제어 (Maximum Crack Width Control in Concrete Bridges Affected By Corrosion)

  • 조태준
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

온도변화에 따른 AISI 304SS의 틈내 전위강하에 관한 연구 (A Study on the IR Drop in Crevice of AISI 304 Stainless Steel by Temperature Variation)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.872-878
    • /
    • 2003
  • As the results of recent industrial development, many industrial plants and marine structures are exposed to severe corrosion environment than before. Especially, under the wet environment, crevice corrosion damage problems necessarily occur and encourage many interests to prevent them. In this study, the electrochemical polarization test was carried out to study characteristics of crevice corrosion for AISI 304 stainless steel in various solution temperatures. The results are as follows ; 1) as the solution temperature increased in IN $\textrm{H}_2\textrm{SO}_4$, the passive current density and critical current density were increased, whereas corrosion potential and break down potential were nearly constant, 2) as the solution temperature increased. the induced time for initiation of crevice corrosion was shortened. 3) The potential range in the crevice was -220mV/SCE to -380mV/SCE according to the distance from the crevice opening, which is lower than that of external surface of -200mV/SCE.

환경열화에 의한 가선재의 피로거동 (Fatigue Behavior of Catenary Wires by Environments Degradation)

  • 김용기;장세기
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2004
  • The effect of surface damage on fatigue properties of catenary wires were investigated to estimate their service lift. As surface defects of the wires caused by surface corrosion increase, surface roughness gets worse, and as roughness increases, it is easy for moisture coming from rain and dew to be condensed around uneven parts of the surface. The condensed moisture causes a locally severe corrosion which leads to damage of the wires. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pantographs touch contact line. The frequent cyclic load on the wire may result in a fatigue fracture. Surface damage by corrosion can make formation of crack initiation at fatigue. In the present study, the fatigue life of the used wire was measured 35 to 50% compared with that of new one in average.

Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

  • Kwon, S.O.;Bae, S.H.;Lee, H.J.;Lee, K.M.;Jung, S.H.
    • Corrosion Science and Technology
    • /
    • 제13권6호
    • /
    • pp.209-213
    • /
    • 2014
  • Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

전기화학적 및 해수 건습반복 방법에 의한 콘크리트 내의 임계 염화물량 평가 (Estimation of Chloride Corrosion Threshold Value in Concrete by Using Electrochemical and Cyclic Wet and Dry Seawater Method)

  • 배수호;이광명;정영수;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.245-248
    • /
    • 2005
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mixture proportions, cement type and constituents, presence of admixtures, environmental factors, steel reinforcement surface. conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half cell potential method was carried out to estimate the chloride corrosion threshold value when corrosion for reinforcing steel in concrete was perceived. For this purpose, lollypop and right hexahedron test specimens were made for 31.4$\%$, 41.5$\%$ and 49.7$\%$ of w/c, respectively and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with water-cement ratio and accelerated corrosion test method, respectively and the chloride corrosion threshold value was found to range from 0.91 to 1.43 kg/$m^{3}$.

  • PDF