• Title/Summary/Keyword: corrosion effects

Search Result 1,012, Processing Time 0.03 seconds

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels (주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석)

  • Gyeong-Geun Lee;Suk-Min Hong;Ji-Su Kim;Dong-Hyun Ahn;Jong-Min Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

Effects of PEG addition as an additive for electroplating of Cu at high current density (고전류밀도 전해도금 공정에서 PEG 첨가 효과)

  • Byeoung-Jae Kang;Jun-Seo Yoon;Jong-Jae Park;Tae-Gyu Woo;Il-Song Park
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.274-284
    • /
    • 2024
  • In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO4 and 100 g/L H2SO4, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.

The effect of zinc, iron and manganese content on gamma shielding properties of magnesium-based alloys produced using the powder metallurgy

  • Mesut Ramazan Ekici;Emre Tabar;Gamze Hosgor;Emrah Bulut ;Ahmet Atasoy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3872-3883
    • /
    • 2024
  • This study investigates the effects of Zinc (Zn), Manganese (Mn), and Iron (Fe) additions on the microstructure, corrosion behaviour, biocompatibility, mechanical, and gamma-ray shielding properties of Magnesium (Mg) alloys prepared in various compositions using powder metallurgy (PM). The microstructure and mechanical properties of these alloys were analyzed using electron microscopes (SEM and FE-SEM) and X-ray diffraction (XRD) methods. The results showed positive changes in the material's structure when the percentage of zinc added to pure magnesium increased. It was observed that the material became ductile, and the ductile fracture increased when the zinc ratio increased. The gamma-ray shielding properties of newly produced Mg-based alloys have also been discussed since they have a high potential for use in space technologies. Radiation shielding measurements have been performed using a 3" × 3" NaI(Tl) scintillation detector NaI (Tl) gamma-ray spectrometer. The gamma-ray shielding parameters such as the linear attenuation coefficients (μl), mass attenuation coefficient (μm), effective atomic number (Zeff), half-value layer (HVL), and tenth-value layer (TVL) have been determined experimentally at photon energies of 0.511 MeV (emitted from a22Na radioactive point source) and 1.173 MeV and 1.332 MeV (emitting from a60Co radioactive point source). The obtained parameters have been compared to the theoretical results of the XCOM software, and a satisfactory agreement has been found. It can be said from the results that the Mg30Zn alloy has the best shielding properties among the produced materials.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.

A COMPARATIVE STUDY ON THE PHYSICAL PROPERTIES OF ORTHODONTIC PLIERS ACCORDING TO TYPES OF STERILIZATION (멸균 방법에 따른 교정용 플라이어의 물성 변화에 대한 비교 연구)

  • Cho, Il-Je;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.329-341
    • /
    • 1998
  • Sterilization has received much attention in orthodontic practices over the past several years. The present study was undertaken to investigate the effects of sterilization on the physical properties of orthodontic pliers-AEZ, Unitek, and Dentronix ligature cutters. This study was designed to examine the tips of ligature cutters before and after 200 and 400 sterilization cycles using the Bowmar RHT-1000, the Dentronix DDS-5000, and the Eschmann SES-2000. The tip surface and the fracture surface were observed with a scanning electron microscope. The microstructure was observed with an optical microscope. The hardness test was carried out with the mic개-Vickers hardness tester and the Rockwell C Scale hardness tester. The chemical composition was analyzed by energy dispersive X-ray spectrometer. The results of this study were as follows : 1. The number and the size of corrosion products on the tip surface and the proportion of cleavage planes in fractured specimen increased, but the hardness of the tip decreased in proportion to sterilization cycles. From these observations, it was considered that mechanical properities decreased in proportion to sterilization cycles. 2. The number and the size of chromium carbides increased in proportion to sterilization cycles. Coarse microstructure decreased mechanical properities. 3. The AEZ and Unitek ligature cutters were Fe-Cr stainless steels, but the Dentronix ligature cutter was Co-Cr alloy. There were many differences among manufactures, but the chemical composition was .not changed after sterilization cycles. 4. The tip edge of ligature cutter used in a clinic revealed microcracks with the SEM observation. Clinical experience confirmed that ligature cutters were gradually degraded by sterilization.

  • PDF

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Convergence Study on the Development and Material Property of Wax for Surface Conservation of Iron Alloy Outdoor Sculpture (야외 철제 조각 작품 표면 보존용 왁스의 개발 및 재료 특성에 관한 융합 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.151-160
    • /
    • 2018
  • Waxes currently used as a coating material to preserve surfaces of outdoor iron sculptures tend to face lower coating strength and efflorescence due to the aging from air pollution and acid rains. Consequently, they are subjected to repeated corrosions shortly after the treatment. And the sculptures face the problem losing their original nature because of the changes of colors and lusters, so this convergence study aims at developing wax with better performance than the existing materials. For this reason, the study identified the effects of physical property using the environmental experiments such as the tests of salt spray and gas corrosion as well as the analysis of luster level and thermo-gravimetry. As this study result, the developed ISC wax showed the excellent blocking effect from salt water and coating durability more than five times compared with the existing waxes, better acid resistance by two-four times, sun block effect by 2-10 times, improved luster variance by 3-16 times, improved thermo-stability and durability by 0.5-5 times, and therefore demonstrating far better coating effect than the existing waxes. In the light of these findings, this study contributes for this new development which can replace the existing waxes used so far in order to preserve the outdoor iron sculptures.