• 제목/요약/키워드: corrosion effect

검색결과 1,754건 처리시간 0.026초

부식 배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on failure Probability of Corrosion Pipeline)

  • 이억섭;편장식
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

반복하중을 받는 배관용 강재의 피로수명에 미치는 부식의 영향 (Effect of Corrosion on Fatigue Life of Piping material under Repeating Load)

  • 박경동;안재필
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.228-229
    • /
    • 2005
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, it was not known that the effect of shot peening in corrosion environment. In this study, the effect of shot peening on corrosion fatigue crack growth of sping steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of spring steel are as follows; the fatigue crack growth rate of the shot peening material was lower than of the un peening material. And fatigue life shows more improvement in the shot peening material than un peening material. This is because the compressive residual stress of surface operate resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

  • PDF

$3.5\%$ NaCl수용액에서 SAE 5155의 부식거동에 미치는 쇼트피닝의 영향 (The Effect of Shot Peening on Corrosive Behavior of SAE 5155 in $3.5\%$ NaCl Solution)

  • 안재필;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.692-700
    • /
    • 2005
  • In this study. investigated the effect of shot peening on the corrosion of SAE 5155 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was Performed on the four kinds of specimens. Corrosion Potential, polarization curve, residual stress etc. were investigated from experimental results. From these test results, the effect of shot peening on the corrosion was evaluated The important results of the experimental study on the effects of shot peened SAE 5155 on the corrosion are as follows; Shot peened specimens show the low of corrosion current as compared with un peened specimens. In the case of corrosion potential, shot Peened specimen shows more negative Potential as compared with that of parent metal Surface of specimen, which is treated with shot peening Process. is Placed as more activated state against inner parent metal. Corrosion rate is shown that shot Peened specimens have less corrode than un peened specimens. But non heat treated shot peened specimens show the biggest weight loss owing to variable compressive residual stress layer by shot ball.

Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.171-181
    • /
    • 2016
  • In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

  • Lee, Woo Yong;Koh, Seong Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제4권2호
    • /
    • pp.39-44
    • /
    • 2005
  • The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. However, corrosion rate was not directly related to SSC susceptibility of steels.

과하중에 의한 선박용 알루미늄 합금재의 부식피로 파괴지연에 관한 연구 (Study on the Retardation Effect of Overload on the Corrosion Fatigue Crack Propagation Al-Alloy used for the Shipbuilding)

  • 임우조;이종락;이진열
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.122-129
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuliding industries such as marine structures, ship and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics which was closed up an important role in mechanical design. In this study, the 5086 Al-alloy was tested by use of rotary bending fatigue tester. The retardation effect of overload on the corrosion fatigue crack propagation in sea environment was quantitatively studied. 1) Retardation effect of corrosion fatigue crack propagation is most eminent when overload ratio is 1.52, overload magnitude corresponds to about 77% and 55% of yield strength and tensile strength respectively. 2) After overload ratio 1.52 was used, retardation of corrosion fatigue crack growth rate is largely retarded and quasi-threshold stress intensity factor range($\Delta\textrm{K}_{th}$) appears. 3) According to m of experimental constant, retardation effect of corrosion fatigue crack propagation corresponds to about 25% of constant stress amplitude when overload ratio is 1.52. 4) When overload ratio 1.52 was used, retardation parameter (RP) decreases to about 0.43 and corrosion sensitivity (S)decreses to about 2.1.

  • PDF

Corrosion of Rebar by Chlorides and Concrete Durability

  • Hong, Naifeng
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.127-130
    • /
    • 2004
  • Throughout the world, corrosion of rebar in concrete is a main form for concrete building destruction. The chloride is prime criminal. This paper presents the harm of chloride corrosion in China, the effect of chloride corrosion on the durability of concrete buildings and protection strategies for rebar corrosion.

해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향 (Effect of flow velocity on corrosion rate and corrosion protection current of marine material)

  • 이승준;한민수;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제14권5호
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.31-37
    • /
    • 2017
  • A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

차량용 스프링강재의 압축잔류응력이 부식에 미치는 영향 (The Effect of Compressive Residual Stress of Spring Steel for Vehicle on Corrosion)

  • 박경동;안재필
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.159-165
    • /
    • 2005
  • Shot peening can be defined as the process of work hardening of the surface of components by means of propelled stream of spherical shot. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in $3.5\%\;NaCl$. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened spring steels on the environment corrosion are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal.