• Title/Summary/Keyword: corrosion behaviors of rebar

Search Result 8, Processing Time 0.022 seconds

Effect of Rebar Corrosion on the Onset of Cracks in Cover Concrete (철근부식에 의한 콘크리트의 균열발생에 관한 연구)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.771-774
    • /
    • 1999
  • This study was carried out to quantitatively investigate the amount of corrosion at the time of onset of cracks in cover concrete due to rebar corrosion. In this experiments, the accelerated galvanostatic corrosion method was carried out. FEM analyses were also conducted to investigate the expansive behaviors due to rebar corrosion and the mechanical properties of corrosion products. As a result, it was concluded that the corrosion ratio at the time of onset of cracks in cover concrete was 3% by weight. The onset of cracks in cover concrete due to rebar corrosion could be analyzed by the finite element method.

  • PDF

Corrosion Behaviors of Rebar in Low Temperature Mortar with Chloride and Nitrite (염화물 및 아질산염을 사용한 저온환경하 모르타르내 철근의 부식특성)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.218-219
    • /
    • 2017
  • In order to examine the possibility of practical at low-temperature environment curable cement mortar with chloride and nitrite as cold resistance admixture for rebar corrosion prevention. As a result, chloride was used using nitrite complex in low temperature environment and corrosion performance of rebar was improved and mortar strength was promoted. The ratio of nitrite than chloride applied more than twice, corrosion of the reinforcing bars will not occur even in low temperature environment, cement hydration reaction will be promoted and mortar will prevent freezing damage.

  • PDF

Corrosion behaviors of cement mortar specimens with different cover thickness in natural sea water

  • Jeong, Jin-A;Jin, Chung-Kuk;Jeong, Eun-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.107-111
    • /
    • 2016
  • This paper presents electrochemical corrosion behaviors of cement mortar specimens in the high salinity condition. Chloride ion is known as the most detrimental parameter to cause the corrosion in reinforced concrete. Increasing the concrete cover thickness is one of the corrosion protection methods against chloride ion; so, this study mainly focuses on the effects of mortar cover thickness on corrosion protection. In specimens, rebar, which was a height of 200 mm and a diameter of 10 mm, was installed at the center of the small size form. Later on, mortar was injected into the form, and 10, 20, 30, 40, and 50 mm of the different mortar cover thicknesses were selected. Potential measurements, linear polarization resistance tests, and cyclic potentiodynamic polarization tests were performed for specimens that were exposed to seawater. These results were compared with visual inspection results of rebar. The results show that an increase in the cover thickness contributes to corrosion protection. In addition, the result of electrochemical corrosion tests generally agreed with that of an autopsy visual inspection.

Study on Corrosion and Structural Performance in Hot-Dip Galvanizing Steel (용융아연도금 철근의 부식 특성 및 구조적 특성에 대한 연구)

  • Kwon, Seung-Jun;Lee, Sang-Min;Lee, Myung-Hoon;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.613-621
    • /
    • 2012
  • Steel corrosion is one of the most critical deteriorations in concrete structures due to the problems associated with both durability and structural safety issues. For protection of steel against corrosion problems, researches to improve concrete durability and steel corrosion protection such as rebar coating by hot-dip galvanizing steel have been carried out. This study was performed to quantitatively evaluate anti-corrosion and structural performance of concrete structures reinforced with hot-dip galvanizing steel rebar. Preliminary tests for several metal coatings such as zinc, aluminum, and their alloy (Zn 45% + AL 55%) were performed. After evaluation of corrosive characteristics, Zn was selected for the coating material and the corrosion behaviors in Zn-coated steel were evaluated in various conditions. Furthermore, tensile and adhesive strengths were evaluated for the normal and the hot-dip galvanized steel. The crack patterns and structural behaviors of RC specimens with the normal and coated steel were investigated. Also, corrosion characteristics including corrosion in various coating metal and potential change in metal with notch were evaluated. Structural performances of tensile and adhesive strengths as well as RC beam behavior under flexural/shear loading were evaluated. The test and evaluation results showed that the applicability of hot-dip galvanized steel rebar can be used as corrosion resistant reinforcements for RC structures.

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Bond Characteristic Between Lightweight Concrete and GFRP Bar (경량콘크리트와 GFRP 보강근의 부착 특성)

  • Son, Byung-Lak;Kim, Myung-Sik;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.112-121
    • /
    • 2013
  • FRP reinforced lightweight concrete structures can offer corrosion resistance and weight reduction effect simultaneously, so practical use of the structures may be expected afterwards. But to make concrete structures using lightweight concrete and FRP bar, that can resist external forces without internal slip of the FRP bar, it is very important to understand bond characteristic between lightweight concrete and FRP bar. During that time, a lot of studies for bond behaviors of FRP bar in normal concrete were conducted, but studies for bond behavior of FRP bar in lightweight concrete are very limited to date. So, bond characteristic between lightweight concrete and helically deformed GFRP bar was investigated in this study. Three main parameters were considered in experimental investigation: type of rebar, concrete type, and compressive strength of lightweight concrete. As an experimental result, it could be known that bond strength of helically deformed GFRP bar in lightweight concrete was 0.49 times bond strength of steel reinforcement in normal concrete.