• Title/Summary/Keyword: corrosion assessment

Search Result 294, Processing Time 0.026 seconds

A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System (PWR 1차계통내 해체 방사성선원항 평가방법에 관한 연구)

  • Song, Jong Soon;Kim, Hyun-Min;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Currently, there are many programs which are now being developed or already developed to predict radionuclide and corrosion product at the stage of designing NPP. However, since there are not many developments in evaluating quantity of activation corrosion products occurring when disassembling a nuclear power plant there exist some difficulties in calculating accurately. In order to evaluate activation products inventory for the research of effect of neutron activation in the reactor vessel, component of nuclear reactor and adjacent structures, it should be evaluated by using operation history of nuclear reactor, material composition of structure and average neutron flux in every field representing fixed structure of nuclear reactor. In this study, CORA, PACTOLE, CRUDSIM, CREAT and ACE codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor which is used at the stage of designing. As a future study, the accuracy in calculating the quantity of product corrosion can be increase by finding out the possibility of use and improvement for evaluation of the decontamination.

A study on the Reliability Analysis of Nuclear Steel Containment Structures Subject to Internal Pressure (내압을 받는 원전 강재격납건물의 신뢰성 해석)

  • 오병환;최성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.229-232
    • /
    • 1999
  • Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the analysis for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established.

  • PDF

Definition of Digital Twin Models for Prediction of Future Performance of Bridges (교량의 장기성능 예측을 위한 디지털 트윈모델 정의)

  • Shim, Chang-Su;Jeon, Chi Ho;Kang, Hwi Rang;Dang, Ngoc Son;Lon, Sokanya
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

An enhanced method of predicting effective thickness of corroded steel plates

  • Kaita, Tatsumasa;Appuhamy, J.M. Ruwan S.;Ohga, Mitao;Fujii, Katashi
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.379-393
    • /
    • 2012
  • Many steel bridge infrastructures in the world are getting older, and a large number of these structures are in need of maintenance, rehabilitation or replacement. Most of them are subjected to corrosion due to exposure to aggressive environmental conditions and inadequate maintenance, causing reduction of their carrying capacities. In order to have an adequate bridge management, it is of paramount importance to develop an efficient, accurate and rapid condition assessment method which can be used to make reliable decisions affecting the cost and safety. Therefore, a simple and accurate method of calculating remaining yield and tensile strength by using a concept of representative effective thickness with correlation of initial thickness and maximum corroded depth is proposed in this study, based on the results of many tensile coupon tests of corroded plates obtained from a steel plate girder with severe corrosion, used for about 100 years. Furthermore, a strength reduction diagram which will be very useful for bridge inspection engineers to make rational decisions about the maintenance management of aged steel bridge infrastructures is presented.

Assessment of Low Carbon Steel Corrosion Inhibition by Eco-Friendly Green Chaenomeles sinensis Extract in Acid Medium

  • Chung, Ill-Min;Hemapriya, Venkatesan;Ponnusamy, Kanchana;Arunadevi, Natarajan;Chitra, Subramanian;Chi, Hee-Youn;Kim, Seung-Hyun;Prabakaran, Mayakrishnan
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.238-249
    • /
    • 2018
  • The impact of methanol extract of Chaenomeles sinensis (C. sinensis) leaves on acid corrosion of low carbon steel was assessed by gravimetric and electrochemical methods. Phytochemical characterization by total phenolic content (TPC), and total flavonoids content (TFC) of the extract was performed. The TPC and TFC concentrations were identified as 193.50 and 40.55 mg/g. Efficiency increased remarkably in the presence of inhibitor and found as concentration dependent. A maximum inhibition efficiency of 93.19% was achieved using 2000 ppm of the C. sinensis inhibitor. Impedance and surface morphology analysis by SEM and AFM revealed that the anticorrosive activity results from the protective film of phytochemical components of C. sinensis extract adsorbed on the metal surface.

TECHNIQUES FOR INTERGRANULAR CRACK FORMATION AND ASSESSMENT IN ALLOY 600 BASE AND ALLOY 182 WELD METALS

  • LEE, TAE HYUN;HWANG, IL SOON;KIM, HONG DEOK;KIM, JI HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.102-114
    • /
    • 2015
  • Background: A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. Methods: An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. Results: A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

Reliability of Maintained Hull Girders of Two Bulk Carrier Designs Subjected to Fatigue and Corrosion

  • Soares, C.Guedes;Garbatov, Y.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The objective of the paper is to study the impact of changing the traditional hull design of bulk carriers by providing them with a double hull while keeping the same deadweight. It is demonstrated that by introducing the double hull the structural reliability is increased throughout the entire life and also the extend of the needed repair is reduced. The results are obtained with recently developed mathematical tools for the reliability assessment of ship hulls subjected to the existence of multiple cracks both in the stiffeners and in the plating and it models the crack growth process. The effect of corrosion is represented as time dependent. The long-term stress range acting on the elements is defined as a function of the local transverse pressure of the internal cargo and outside sea water combined with the stresses resulting from the longitudinal bending of the hull, which is a combined with the stresses resulting from the longitudinal bending of the hull, which is a combineation of horizontal and vertical bending moments. The effect of maintenance actions is modelled as a stochastic process. The results show that a different design of the midship section improves the structural safety and also the economy with respect to structural repair of bulk carriers.

  • PDF

Development of Risk Assessment Techniques for City Gas Pipeline II - Corrosion Analysis (도시가스배관 위험평가기술 개발 II - 부식 평가)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.1-6
    • /
    • 2003
  • In this work, procedure evaluating failure modes such as pipe rupture, large scale leak, and small scale leak was suggested using equations to assess remaining strength by corrosion failure. Additionally, the method to predict probability of failure was suggested according to the aforementioned failure modes, and by combining data on corrosion rate, probability of long-term failure can be induced. This work will be very useful in predicting lifetime or exchanging period of pipeline.

  • PDF

Microstructural and Mechanical Property Evaluation of the Ferritic-Martensitic Steel under Liquid Sodium Environment (액체소듐 환경에서 Ferritic-Martensitic강의 미세조직 및 기계적 성질 평가)

  • Kim, Jun Hwan;Kim, Jong Man;Kim, Sung Ho;Lee, Chan Bock
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.914-921
    • /
    • 2010
  • Studies were carried out to assess the microstructural and mechanical properties of ferriticmartensitic steel under a flowing sodium environment. HT9 (12Cr-MoVW) and Gr.92 (9Cr-MoVNbW) steel were exposed to liquid sodium at $650^{\circ}C$ containing dissolved oxygen of 20 ppm for 2333 hours and evaluations of the microstructure as well as the mechanical properties of the microhardness and nanoindentation were carried out. The result showed that both HT9 and Gr.92 exhibited macroscopic weight loss caused by general corrosion as well as localized types such as intergranular corrosion and pitting. Decarburization at the steel surface took place as the test proceeded. As the Cr content increased, dissolution and decarburization were suppressed. Assessment of the actual cladding geometry revealed that an aging process rather than decarburization governed the mechanical properties, which resulted in a decrease of the microhardness and yield stress.

Assessment of titanium alloy bolts for structural applications

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • This paper explored the viability of utilising titanium alloy bolts in the construction industry through an experimental programme, where a total of sixty-six titanium alloy (Ti/6Al/4V) bolts were tested under axial tension, pure shear and combined tension and shear. In addition, a series of Charpy V-notch specimens machined from titanium alloy bolts, conventional high-strength steel bolts, austenitic and duplex stainless steel bolts were tested for impact toughness comparisons. The obtained experimental results demonstrated that the axial tensile and pure shear capacities of titanium alloy bolts can be reasonably estimated by the current design standards for steel structures (Eurocode 3, AS 4100 and AISC 360). However, under the combined tension and shear loading conditions, significant underestimation by Eurocode 3 and unsafe predictions through AS 4100 and AISC 360 indicate that proper modifications are necessary to facilitate the safe and economic use of titanium alloy bolts. In addition, numerical models were developed to calibrate the fracture parameters of the tested titanium alloy bolts. Furthermore, a design-based selection process of titanium alloy bolts in the structural applications was proposed, in which the ultimate strength, ductility performance and corrosion resistance (including galvanic corrosion) of titanium alloy bolts was mainly considered.