• Title/Summary/Keyword: correlation crystallinity index

Search Result 5, Processing Time 0.018 seconds

Adsorption Characteristic of Endo I and Exo II Purified from Cellulase by Trichoderma viride on Celluloses with Different Crystallinity (결정성이 다른 셀룰로오스에 대한 Trichoderma viride속 Cellulase로부터 분리한 Endo I 및 II의 흡착특성)

  • 김동원;홍영관;장영훈;이재국
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.162-167
    • /
    • 1998
  • The adsorption behaviors of two major cellulase components, endo I and exo II, from Trichoderma viride were investigated using $\alpha$-celluloses with different correlation crystallinity index(Cc) as substrates. The adsorption of cellulase enzyme components was significantly affected by the reaction condition and the physicochemical properties of the cellulose. The $\alpha$-cellulose was hydrolyzed in the presence of cellulase for various periods. The correlation crystallinity index of $\alpha$-cellulose increased with increasing the hydrolysis time. The adsorption was apparently found to obey the first-order kinetics, and the adsorption activation energy(Ea) was calculated from the adsorption rate constant(ka). The value of adsorption rate constant for endo I was larger than that of exo II. This means that endo I are adsorbed more rapidly than exo II. With the increase in correlation crystallinity index, the values of the adsorption rate constants for endo I and exo II decreased, respectively. The activation energy for the adsorption of exo II on the cellulose also was larger than that of endo I. Also adsorption activation energy of endo I and exo II increased with an increase in the crystallinity of sample cellulose.

  • PDF

Physicochemical Changes in UV-Exposed Low-Density Polyethylene Films

  • Salem, M.A.;Farouk, H.;Kashif, I.
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.168-173
    • /
    • 2002
  • Unstabilized low-density polyethylene (LDPE) films and films formulated with hindered amine light stabilizer (HALS) were exposed to UV-radiation; and the physicochemical changes during photooxidation processes have been investigated using tensile, FTIR spectre-photometric and thermal analytical (DSC) techniques. The dependence of tensile properties (elongation- and stress-at-break), carboxyl index and heat of fusion on UV-irradiation time have been discussed. The use of HALS is found to be effective in maintaining the UV-mechanical properties of the LDPE films. The experimental results showed that there exists no correlation between mechanical properties and carbonyl index, whereas crystallinity correlates well with carbonyl index in unstabilized and stabilized films for irradiation times greater than 100 h. The rate of formation of carbonyl groups is found to be dependent on UV exposure time. Crystallinity of the film samples is strongly influenced by both exposure time and presence of HALS.

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate (온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰)

  • Lee, Seon Yong;Chang, Bongsu;Kang, Sue A;Seo, Jieun;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.133-146
    • /
    • 2021
  • Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.