• 제목/요약/키워드: correlation based feature selection

검색결과 55건 처리시간 0.025초

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.75-91
    • /
    • 2022
  • This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

Life prediction of IGBT module for nuclear power plant rod position indicating and rod control system based on SDAE-LSTM

  • Zhi Chen;Miaoxin Dai;Jie Liu;Wei Jiang;Yuan Min
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3740-3749
    • /
    • 2024
  • To reduce the losses caused by aging failure of insulation gate bipolar transistor (IGBT), which is the core components of nuclear power plant rod position indicating and rod control (RPC) system. It is necessary to conduct studies on its life prediction. The selection of IGBT failure characteristic parameters in existing research relies heavily on failure principles and expert experience. Moreover, the analysis and learning of time-domain degradation data have not been fully conducted, resulting in low prediction efficiency as the monotonicity, time correlation, and poor anti-interference ability of extracted degradation features. This paper utilizes the advantages of the stacked denoising autoencoder(SDAE) network in adaptive feature extraction and denoising capabilities to perform adaptive feature extraction on IGBT time-domain degradation data; establishes a long-short-term memory (LSTM) prediction model, and optimizes the learning rate, number of nodes in the hidden layer, and number of hidden layers using the Gray Wolf Optimization (GWO) algorithm; conducts verification experiments on the IGBT accelerated aging dataset provided by NASA PCoE Research Center, and selects performance evaluation indicators to compare and analyze the prediction results of the SDAE-LSTM model, PSOLSTM model, and BP model. The results show that the SDAE-LSTM model can achieve more accurate and stable IGBT life prediction.

ECG 특징추출 기반 개인 바이오 인식 (Personal Biometric Identification based on ECG Features)

  • 윤석주;김광준
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.521-526
    • /
    • 2015
  • 개인의 신원을 확인하기 위해 인간의 생물학적 특성을 사용하는 방법에 대한 연구가 활발히 진행되고 있다. 심전도를 이용한 생체 인식 기술은 피험자에 피부자극을 일으키지 않고 위조가 어렵다. 기존의 생체 인식 시스템인 지문, 얼굴 등의 인식시스템과 쉽게 접목이 가능하여 다중 생체 인식 시스템으로 응용할 수 있다. 본 논문에서는 이산 웨이블릿 변환 계수를 사용한 심전도의 파형 특성분석법으로 개인을 식별하는 방법을 제안하였다. 심전도 신호의 특징추출은 총 9개의 이산 웨이블릿 변환 계수를 대상으로 상관 계수 분석으로 수행하였다. 식별은 각 클래스의 특징벡터를 입력으로 오류 역전파 신경망을 적용하여 수행하였다. MIT-BIH QT 데이터베이스내 24명의 심전도에 대해 98.88%의 식별율을 나타냈다.

대출심사의 예측 정확도 향상을 위한 방법 제안 (Proposing the Method for Improving the Forecast Accuracy of Loan Underwriting)

  • 양유영;박상성;신영근;장동식
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1419-1429
    • /
    • 2010
  • 외환위기 이후 본격적으로 시작된 외국계 대형 은행의 국내 진출 및 선진 금융상품의 수입은 국내 은행 산업 구조와 환경을 변화시키고 경쟁을 가속화시켰다. 앞으로 일어날 변화 및 추세에 대한 정확한 예측은 경쟁이 치열한 환경에서 국내의 은행이 생존하고 발전하기 위해 필수적인 요소이며 그 중에서도 대출 신청 고객에 대한 승인 여부에 대한 예측은 대출 상품이 은행 경영에 있어 가장 큰 비중을 차지하는 수익의 원천이자 신용 리스크 관리의 중심이 된다는 점에서 큰 의미가 있다. 따라서 본 논문에서는 대출 심사 결과의 예측 정확성을 높이기 위한 방법을 제시하고자 한다. 수행 단계로는 상관관계 분석과 특징선택 기법을 통해 대출승인 결과에 유의한 영향을 주는 예측변수들을 선별하고 선별된 변수로 2-Step 군집화 기법을 통해 고객을 군집화 하였다. 이후 각 군집에 LR, NN, SVM 기법을 활용하여 구축한 예측 모형을 적용하여 정확도가 가장 높은 모형을 찾아보았다. 최종적으로 기존 방식의 대출 심사 모형에 LR, NN, SVM 예측 모형을 적용했을 때 산출된 결과와 제안한 모형의 결과를 비교하여 예측의 정확도를 평가하였다.

감성모델을 이용한 음악 탐색 인터페이스 (Music Exploring Interface using Emotional Model)

  • 유민준;김현주;이인권
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.707-710
    • /
    • 2009
  • 본 논문에서는 감성 모델을 이용하여 음악을 정렬한 후, 이를 바탕으로 음악을 탐색하는 인터페이스를 제안한다. 먼저 다양한 곡들에 대한 Arousal-Valence 요소를 설문조사 한 후, 곡들의 다양한 audio feature 들과 Arousal-Valence 요소들간의 상관관계를 계산하여, AV모델을 수립한다. 그 후, 다양한 음악들을 수립된 AV모델에 대하여 정렬을 하여 음악을 배치한 후, 이를 마우스를 이용하여 탐색하는 인터페이스를 제공한다. 기존의 관련 인터페이스보다 더욱 직관적으로 원하는 곡을 선택할 수 있게 하기 위해서, 마우스의 위치에 따라서 여러 음악들이 페이드 인/아웃 되게 하였으며, 여러 가지 모드의 인터페이스를 제공하여, 사용자가 가장 편리한 인터페이스를 사용할 수 있게 하였다. 사용자는 본 음악 탐색 인터페이스를 이용하여, 더욱 감정적으로 원하는 음악을 쉽게 찾을 수 있게 된다.

  • PDF

얼굴 랜드마크 거리 특징을 이용한 표정 분류에 대한 연구 (Study for Classification of Facial Expression using Distance Features of Facial Landmarks)

  • 배진희;왕보현;임준식
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.613-618
    • /
    • 2021
  • 표정 인식은 다양한 분야에서 지속적인 연구의 주제로서 자리 잡아 왔다. 본 논문에서는 얼굴 이미지 랜드마크 간의 거리를 계산하여 추출된 특징을 사용해 각 랜드마크들의 관계를 분석하고 5가지의 표정을 분류한다. 다수의 관측자들에 의해 수행된 라벨링 작업을 기반으로 데이터와 라벨 신뢰도를 높였다. 또한 원본 데이터에서 얼굴을 인식하고 랜드마크 좌표를 추출해 특징으로 사용하였으며 유전 알고리즘을 이용해 상대적으로 분류에 더 도움이 되는 특징을 선택하였다. 본 논문에서 제안한 방법을 이용하여 표정 인식 분류를 수행하였으며 제안된 방법을 이용하였을 때가 CNN을 이용하여 분류를 수행하였을 때 보다 성능이 향상됨을 볼 수 있었다.

데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석 (Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis)

  • 안상아;이정현;박혁진
    • 지질공학
    • /
    • 제33권4호
    • /
    • pp.673-687
    • /
    • 2023
  • 데이터 탐색은 수집한 데이터를 다양한 각도에서 관찰 및 이해하는 과정으로 데이터 구조 및 특성 분석을 통해 데이터의 분포와 상관관계를 파악하는 과정이다. 일반적으로 산사태는 다양한 인자들에 의해 유발되고 발생 지역에 따라 유발 인자들이 미치는 영향이 상이하기 때문에 산사태 취약성 분석 이전에 데이터 탐색을 통해 유발 인자 사이의 상관관계를 파악하고 특징적인 유발 인자를 선별한다면 효과적인 분석을 수행할 수 있다. 따라서 본 연구는 데이터 탐색이 예측 모델의 성능에 미치는 결과를 확인하기 위해 두 단계에 걸친 데이터 탐색을 수행하여 인자를 선별하고, 선별된 유발 인자들 사이의 조합과 23개의 전체 유발 인자 조합을 활용하여 딥러닝 기반의 산사태 취약성 분석을 진행하였다. 데이터 탐색 과정에서는 Pearson 상관계수 heat map과 random forest의 인자 중요도 histogram을 활용하였으며, 딥러닝 기반 산사태 취약성 분석 결과의 정확도는 분석을 통해 획득한 산사태 취약 지수 값을 이용해 제작한 산사태 취약성 지도를 confusion matrix 기반의 정확도 검증 방법을 통해 분석하였다. 분석 결과, 전체 23개의 인자를 사용한 산사태 취약성 해석 결과는 55.90%의 낮은 정확도를 보였지만 한 단계의 탐색을 거쳐 선별한 13개 인자를 활용한 취약성 해석 결과는 81.25%의 분석 정확도를 보였고, 두 단계 데이터 탐색을 모두 수행하여 선별된 9개의 유발 인자를 활용한 산사태 취약성 분석 결과는 92.80%로 가장 높은 정확도를 보였다. 따라서 데이터 탐색을 통해 특징적인 유발 인자를 선별하고 분석에 활용하는 것이 산사태 취약성 분석에서 더 좋은 분석 성능을 기대할 수 있음을 확인하였다.

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계 (Design of Automatic Document Classifier for IT documents based on SVM)

  • 강윤희;박용범
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.186-194
    • /
    • 2004
  • 인터넷 상의 정보가 급증하여 필요한 정보를 찾고 관련된 정보를 조직화하는데 많은 시간이 소요된다. 따라서 정보접근 부하를 줄일 수 있는 자동적인 문서 분류의 중요성과 필요성이 증가하고 있다. 본 논문에서는 웹 문서의 자동 분류 시스템의 설계와 구현을 기술한다. 디렉터리 내의 학습 문서 집합을 기반으로 구성된 대표 단어 집합을 이용하여 문서 분류 모델을 학습하기 위해 SVM을 사용하였다. 본 시스템에서는 정보통신 웹 디렉터리 내의 문서로부터 추출된 단어 집합을 기반으로 SVM을 학습 시킨 후 신규 문서에 대해 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특성을 표현하기 위해 벡터공간 모델을 사용하였고 학습 데이터는 가중치를 갖는 특성 집합으로 표현되어진 긍정 및 부정 집합으로 구성하였다. 실험에서는 문서분류의 결과 및 벡터길이의 관련성을 보인다.

  • PDF

Evaluation of Firmness and Sweetness Index of Tomatoes using Hyperspectral Imaging

  • Rahman, Anisur;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Cho, Byoung-Kwan
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.44-44
    • /
    • 2017
  • The objective of this study was to evaluate firmness, and sweetness index (SI) of tomatoes (Lycopersicum esculentum) by using hyperspectral imaging (HSI) in the range of 1000-1400 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and the reference firmness and sweetness index of the same sample were measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing method. The results showed that the regression model developed by PLS regression based on Savitzky-Golay (S-G) second-derivative preprocessed spectra resulted in better performance for firmness, and SI of tomatoes compared to models developed by other preprocessing methods, with correlation coefficients (rpred) of 0.82, and 0.74 with standard error of prediction (SEP) of 0.86 N, and 0.63 respectively. Then, the feature wavelengths were identified using model-based variable selection method, i.e., variable important in projection (VIP), resulting from the PLS regression analyses and finally chemical images were derived by applying the respective regression coefficient on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on firmness, and sweetness index (SI) of tomatoes. Therefore, these research demonstrated that HIS technique has a potential for rapid and non-destructive evaluation of the firmness and sweetness index of tomatoes.

  • PDF