• Title/Summary/Keyword: correction parameter

Search Result 301, Processing Time 0.027 seconds

Error Correction Methode Improve System using Out-of Vocabulary Rejection (미등록어 거절을 이용한 오류 보정 방법 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2012
  • In the generated model for the recognition vocabulary, tri-phones which is not make preparations are produced. Therefore this model does not generate an initial estimate of parameter words, and the system can not configure the model appear as disadvantages. As a result, the sophistication of the Gaussian model is fall will degrade recognition. In this system, we propose the error correction system using out-of vocabulary rejection algorithm. When the systems are creating a vocabulary recognition model, recognition rates are improved to refuse the vocabulary which is not registered. In addition, this system is seized the lexical analysis and meaning using probability distributions, and this system deactivates the string before phoneme change was applied. System analysis determine the rate of error correction using phoneme similarity rate and reliability, system performance comparison as a result of error correction rate improve represent 2.8% by method using error patterns, fault patterns, meaning patterns.

A Characteristic Study on the Power Factor Correction Application for Induction Motor (유도전동기에 대한 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.25-31
    • /
    • 2008
  • The field of induction motor is magnetized and demagnetized for each reversal of the current. This field component of the motor accounts for most of the reactive component of inductive load. Reactive power needs to sustain the electromagnetic field required for the induction motor to operate. Power factor of induction motor is usually low and power factor correction needs. Power factor becomes low by the effect of the reduction operation of load capacity. In most cases, Capacitor capacity for the power factor correction should be complied with the recommendation by the motor capacity. But Capacitor value for power factor correction can't change during the normal operation. In this paper, we analyzed characteristics of power and power factor changing by load fluctuation of low-voltage small size induction motor and show that lower power factor correction's parameter of existing recommendation should be revised by new value.

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

The Analysis of Performance of Precise Single Positioning according to estimation accuracy of Satellite Clock Error (위성 클럭 에러 추정 정확도에 따른 정밀 단독 측위 성능 분석)

  • Zhang, Yu;Shin, Yun-Ho;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.327-332
    • /
    • 2012
  • In this paper, we analyzed the influence of different observation stations distributions on satellite clock offset estimation based on the PANDA software. The result shows that, when the distance between stations is shorter than 200km, the correlation of troposphere parameter and satellite clock offset parameter is strong, the accuracy of satellite clock offset estimation will be up to 0.8ns; when the distance between stations is up to 500km, as the correction of troposphere parameter and satellite clock offset parameter is significantly reduced, and the two kinds of parameters can be distinguished.

A study of correction dependent on process parameters for printing on 3D surface (3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song M.S.;Kim H.C.;Lee S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

A Study on the Partial Path Loss Model By Using the Free Space and Rata Path Loss Model (자유 공간 모델과 하타 모델을 이용한 구간별 경로 손실 모델 설정에 관한 연구)

  • Park, Kyung-Tae;Cho, Hyung-Rae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.194-198
    • /
    • 2011
  • In this paper, we obtained the path loss characteristics in the 850 MHz for Russia area by using the free space path loss model and Okumura-Hata path loss model. In order to extract the additional path loss model parameter from the new Russian regional properties, the mean square error technique is used to obtain the correction factor. According to the obtained correction factor, the differences for the free space and Hata path loss model are 17, 6 dB in the 5 ~ 10 Km, 28, 14 dB in the 10 ~ 15 Km, and 35, 18 dB in the 15 ~ 20 Km. By applying the correction factors, the appropriate partial path loss models for the measured Russain area are proposed.

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

A New Single-Stage Small Power MH lamp Electronic Ballast

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • In this study, we proposed a new single-stage small power MH lamp electronic ballast and power-factor correction circuit with improved circuit by the current of passive power factor correction. Main circuit integrates traditional DC/DC and DC/AC circuits into one-stage DC/AC inverter. Moreover, we described the working principle and control strategy of the new circuit; it's soft switching principle; and resonant element parameter design formula. An experimental prototype of HID lamp electronic ballast with output power of 70 W was built to verify the feasibility of the analysis and design. The simulation and experimental results proved that the power factor of this circuit could reach 94%, with efficiency of 90%. The input current harmonics conform to IEC 61000-3-2 standards and its cost is low. These superior performances of the new circuit indicate certain practical values.

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.