• 제목/요약/키워드: correction parameter

검색결과 299건 처리시간 0.026초

경상분지 남서부 진교-사천 지역 전기백악기 퇴적암에 대한 고자기 연구 (Palaeomagnetism of Early Cretaceous Sedimentary Rocks in Chingyo-Sach'ŏn Area, Southwestern Kyŏngsang Basin)

  • 김인수;강희철;이현구
    • 자원환경지질
    • /
    • 제26권4호
    • /
    • pp.519-539
    • /
    • 1993
  • A total of 264 independently oriented core samples were collected from 26 sites in the southwestern part (the Naktong Trough) of the Cretaceous $Ky{\check{o}}ngsang$ Basin in south Korea. The sampled formations comprise the sedimentary Shindong and the Hayang Groups of the Lower Cretaceous age. Alternating field and thermal demagnetizations were conducted. Characteristic remanent magnetization (ChRM) was relatively easily isolated in each formation except in the Chinju formation, from which only remagnetization circles were observed. Even though an extensive use of the fold test was not possible due to the nearly homoclinal nature of the strata in the area, we believe that the ChRM of each formation is of primary origin based on the following grounds: The in-situ ChRM direction of each formation is different from the present geomagnetic field direction. Fisherian precision parameter becomes enhanced through the tilt correction in all formations, closely to the values required for a positive fold test. Three out of the five studied formations pass the reversal test. The mean palaeomagnetic pole position from the studied area is found to be statistically different from the contemporary pole from the Chinese block exclusive of the Shandong area. The difference in magnetic declination suggests a $14.5^{\circ}$ (${\pm}10.5^{\circ}$) clockwise rotation of the studied area relative to the Chinese block comprising the west of the Tan-Lu fault. On the other hand, any significant difference in magnetic inclination and concurrent palaeolatitude is not observed between the studied area and China as well as the other area (Taegu-Andong area) in the $Ky{\check{o}}ngsang$ Basin. The dual nature of the magnetic polarity confirmed in all formations suggests an older than 124 Ma (Neocomian or older) age of the studied sedimentary strata.

  • PDF

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

Monte Carlo 모의를 이용한 지점 간 확률가중모멘트의 교차상관관계 (Cross Correlations between Probability Weighted Moments at Each Sites Using Monte Carlo Simulation)

  • 신홍준;정영훈;허준행
    • 한국수자원학회논문집
    • /
    • 제42권3호
    • /
    • pp.227-234
    • /
    • 2009
  • 본 연구에서는 지점 간 확률가중모멘트의 교차상관관계를 구하기 위해 Monte Carlo 모의를 이용하여 이를 지점간 표본자료의 교차상관성에 대한 관계식으로 확장하여 근사값을 구하고자 하였다. 모의실험 결과 각각의 확률가중 모멘트간 교차상관계수는 지점 간 표본자료의 교차상관계수와 자료크기가 동일하고 동시간 자료일 경우 기울기 1인 선형관계를 보이며, 자료크기에 따른 동시간 자료의 비율이 작아질수록 선형적인 관계는 점점 약해지게 된다. 따라서 자료크기에 따른 영향을 고려하기 위하여 보정항을 추가한 제곱함수식을 제시하였으며, 이 식에 발생된 자료를 적합시켜 각각의 경우에 따른 매개변수를 추정하였다. 이 결과를 이용하여 지역빈도해석의 지점 간 교차 상관성을 고려한 수문추정량의 분산 추정 등의 연구에 이용될 수 있을 것으로 기대된다.

Optimal 및 Sub-optimal 기준점을 사용한 DGPS 설계 및 성능평가 (Design and Performance Evaluation of DGPS Based on Optimal and Sub-optimal Reference Point)

  • 고광섭;홍성래;정세모
    • 한국정보통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.343-352
    • /
    • 1998
  • DGPS 이용으로 Standalone GPS의 정확도와 동일한 위성을 사용하는 2개 또는 그 이상의 사용자 수신기에서 생기는 공통오차제거가 가능하게 되었다. 정확한 기준점을 갖는 DGPS 시스템은 기준국과 사용자 수신기에서 발생하는 공통오차를 계산하여 사용자 수신기의 의사거리 보정을 한다. 정확한 기준점 측정은 특정한 측량기구 시스템을 이용하여 각 위성의 parameter를 측정하고 후 처리하여 얻게되므로 상당한 시간과 비용이 불가피하다. 본 연구에서는 측량기준점을 바탕으로 한 DGPS시스템과 Sub-optimal 기준점을 이용한 DGPS 시스템을 자체 구현하였다. 각각의 RTCM 보정 데이터를 이용하여 얻은 오차범위를 분석 평가하였다. 연구결과 이 시스템이 민간 및 군의 특정한 해양활동 사용시에 활용될 수 있음을 보였다.

  • PDF

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah;Bousahla, Abdelmoumen Anis;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.311-325
    • /
    • 2020
  • In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

경사 2층 구조를 위한 3차원 굴절탄성파 주시 토모그래피 (Three-dimensional Seismic Refraction Travel Time Tomography for Dipping Two Layers)

  • 조동행;조광호
    • 지구물리와물리탐사
    • /
    • 제1권1호
    • /
    • pp.19-24
    • /
    • 1998
  • 본 논문은 3차원 굴절탄성파 탐사시 얻게 되는 굴절주시를 이용하여 경사진 지층경계면상 속도 분포를 추정하는 방법을 수립코자 수행한 연구를 요약한 것이다. 자료획득은 토모그래피 기법에, 주시 역산은 under-relaxation ART 기법에 의거하였다. 모델은 경사 2층 구조이며, 관련된 매개변수는 지반조사시 만나게 되는 지층을 염두에 두고 선정하였다. 하부 지층에는 수직으로 저속도 혹은 고속도 이상대가 존재하며, 따라서 탐사의 주목적은 이러한 이상대를 탐지하는 것이다. 몇 가지 경우에 대하여 역산을 수행한 결과, 경사 지층 경계면의 경우, 경사 보정을 수행치 않으면 역산 결과는 판독이 어렵거나, 판독하더라도 착오를 일으킬 수 있다는 사실을 확인하였다. 종래 심도 추정을 위한 굴절탄성파 탐사에서, $15^{\circ}$ 이내의 경사지층 경계면을 평균적으로 수평이라고 가정해도 큰 오차가 나지 않는다는 사실을 상기할 때, 앞에 말한 사실은 특이한 일이다.

  • PDF

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.