• 제목/요약/키워드: coronal mass ejections (CMEs)

검색결과 54건 처리시간 0.024초

Radial and azimuthal oscillations of 24 Halo Coronal Mass Ejections using multi spacecraft

  • Lee, Harim;Moon, Yong-Jae;Nakariakov, V.M.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.62.2-62.2
    • /
    • 2017
  • We have made an investigation on the radial and azimuthal wave modes of full halo coronal mass ejections (HCMEs). For this, we consider 24 HCMEs which are simultaneously observed by SOHO and STEREO A & B from August 2010 to August 2012 when they were roughly in quadrature. Using the SOHO/LASCO C3 and STEREO COR2 A & B running difference images, we estimate the instantaneous apparent speeds of the HCMEs at 24 different position angles. Major results from this study are as follows. First, there are quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. Second, the amplitudes of instant speed variations are about a third of the projected speeds. Third, the amplitudes are found to have a weak anti-correlation with period. Our preliminary identification from SOHO observations shows that there are several distinct radial and azimuthal wave modes: m=0 (radial) for five events, m=1 for eleven events, m=2 for three events, and unclear for the other events. In addition, we are making a statistical investigation on the oscillation of 733 CMEs to understand their physical origins.

  • PDF

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • 김록순;;문용재;조경석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Statistical study on the kinematic classification of CMEs from 4 to 30 solar radii

  • Jeo, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.54.3-54.3
    • /
    • 2018
  • In this study, we perform a statistical investigation on the kinematic classication of 4264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups; deceleration, constant velocity, and acceleration motion. For this, we devise four dierent classication methods by acceleration, fractional speed variation, height contribution, and visual inspection. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed classied by the last three methods are consistent with one another. Fourth, according to the last three methods, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

  • PDF

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • 최성환;문용재;박영득
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH

  • MOON Y.-J.;CHOE G. S.;WANG HAIMIN;PARK Y. D.;CHENG C. Z.
    • 천문학회지
    • /
    • 제36권2호
    • /
    • pp.61-66
    • /
    • 2003
  • We have examined the relationship between the speeds of coronal mass ejections (CMEs) and the GOES X-ray peak fluxes of associated flares. Noting that previous studies were possibly affected by projection effects and random association effects, we have considered two sets of carefully selected CME-flare events: four homologous events and four well-observed limb events. In the respective samples, good correlations are found between the CME speeds and the GOES X-ray peak fluxes of the associated flares. A similarly good correlation is found for all eight events of both samples when the CME speeds of the homologous events are corrected for projection effect. Our results suggest that a close relationship possibly exists between CME kinematics and flaring processes.

Origin of the Multiple Type II Solar Radio Bursts Observed on December 31 2007

  • Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Kwon, Ryun-Young;Park, Geun-Seok;Moon, Yong-Jae;Park, Young-Deuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • Solar type II radio burst is regarded as a signature of coronal shock. However its association with coronal mass ejections (CMEs)-driven shock and/or flare blast waves remains controversial. On December 31 2007, SOHO/LASCO and STEREO/COR observed a CME that occurred on the east limb of the Sun. Meanwhile, two type II bursts were observed sequently by KASI/E-Callisto and the Culgoora radio observatory during the CME apparence time. In this study, we estimate kinematics of the two coronal shocks from dynamic spectrum of the multiple type II bursts and compare with the kinematics of the CME derived from the space observations. An origin of the multiple type II bursts is inspected and discussed briefly.

  • PDF

Propagation characteristics of CMEs associated magnetic clouds and ejecta

  • 김록순;;조경석;문용재;;박영득
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.132.2-132.2
    • /
    • 2012
  • We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (>1500 km/s), all CMEs with large D (>0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  • PDF

Comparison of the radial velocities of Halo CMEs based on a flux rope model and an ice cream cone model

  • Kim, Tae-Hyeon;Moon, Yong-Jae;Na, Hyeon-Ock
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • Halo Coronal Mass Ejections (HCMEs) are crucial for space weather, since they can produce severe geomagnetic storms when they interact with the Earth's magnetosphere. It is thus very important to infer their directions, radial velocities, and their three-dimensional structures. In this study, we apply two different models to HCMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using STEREO/SECCHI data. In addition, we use the flux rope model with zero separation angle of flux rope, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from three models have very good correlations (R>0.9) one another. We are extending this comparison to other partial halo CMEs observed by STEREO and SOHO.

  • PDF

Estimation of Halo CME's radial speeds using coronal shock waves based on EUV observations

  • Jeong, Hyunjin;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.54.4-55
    • /
    • 2018
  • Propagating speeds of coronal mass ejections (CMEs) have been calculated by several geometrical models based on multi-view observations (STEREO/SECCHI and SOHO/LASCO). But in 2015, we were unable to obtain radial velocity of a CME because the STEREO satellites were located near the backside of the sun. As an alternative to resolve this problem, we propose a method to combine a coronal shock front, which appears on the outermost of the CME, and an EUV-wave that occurs on the solar disk. According to recent studies, EUV-wave occurs as a footprint of the coronal shockwave on the lower solar atmosphere. In this study, the shock, observed as a bubble shape, is assumed as a perfect sphere. This assumption makes it possible to determine the height of a coronal shock, by matching the position of an EUV-wave on the solar disk and a coronal shock front in coronagraph. The radial velocity of Halo-CME is calculated from the rate of coronal shock position shift. For an event happened on 2011 February 15, the calculated speed in this method is a little slower than the real velocity but faster than the apparent one. And these results and the efficiency of this approach are discussed.

  • PDF

Hot plasmas in coronal mass ejection observed by Hinode/XRT

  • 이진이
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.97-97
    • /
    • 2012
  • Hinode/XRT has observed coronal mass ejections (CMEs) since it launched on Sep. 2006. Observing programs of Hinode/XRT, called 'CME watch', perform several binned observations to obtain large FOV observations with long exposure time that allows the detection of faint CME plasmas in high temperatures. Using those observations, we determine the upper limit to the mass of hot CME plasma using emission measure by assuming the observed plasma structure. In some events, an associated prominence eruption and CME plasma were observed in EUV observations as absorption or emission features. The absorption feature provides the lower limit to the cold mass while the emission feature provides the upper limit to the mass of observed CME plasma in X-ray and EUV passbands. In addition, some events were observed by coronagraph observations (SOHO/LASCO, STEREO/COR1) that allow the determination of total CME mass. However, some events were not observed by the coronagraphs possibly because of low density of the CME plasma. We present the mass constraints of CME plasma and associated prominence as determined by emission and absorption in EUV and X-ray passbands, then compare this mass to the total CME mass as derived from coronagraphs.

  • PDF