• Title/Summary/Keyword: corner filling

Search Result 28, Processing Time 0.017 seconds

A Study on Non-Axisymmetric Ring Forging Using UBET (UBET를 이용한 비축대칭 링 단조에 관한 연구)

  • 배원경;김영호;이종헌;이원희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.63-70
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict forging load and die-cavity filling for non-axisymmetric ring forging. The finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. The plane-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Species Identification of Wooden Members in the Youngsanjeon Hall of Sucknamsa Temple (안성 석남사 영산전 목부재의 수종 분석)

  • Park, Won-Kyu;Jeong, Hyun-Min;Kim, Sang-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study is to examine the species of wooden members used in the Youngsanjeon Hall of the Sucknamsa temple in Anseong, Korea. Ninety-five wood samples from pillars, head-penetrating ties, beams, corner rafter, rafter, floor board and other wood members were identified. Seven species identified were hard pine, exotic pine, Zelkova serrata, Ginkgo biloba, Diospyros, Quercus(Cerrus) and Pyrus spp. In the case of pillars, eight were hard pines and the others Zelkova and Pyrus. Species of angle rafter were Ginkgo biloba and Zelkova. and those of beams were one hard pine and one Zelkova. Two purlin samples were Quercus(Cerrus) and rafters were hard pines except one Ginkgo and one exotic pine. Roof-filling timbers were identified as Zelkova and Diospyros spp. The other samples of roof-filling timbers were all identified as hard pines. The use of Ginkgo and several hardwoods in addition to hard pines may indicate supply of local logs near the Sucknamsa temple.

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail (중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계)

  • Park, J.H.;Lee, K.H.;Kim, S.M.;Kim, H.J.;Kim, S.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

Reason of Die Fracture in Hot Forging of an Aluminum Fixed Scroll and Its Practical Measures (알루미늄 고정 스크롤 열간 단조공정의 금형 파괴 원인 및 실용적 대책)

  • Kim, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.156-161
    • /
    • 2017
  • In this study, the reason of die fracture occurring in hot forging of an aluminum fixed scroll was studied, based on experiments and finite element predictions. The material is assumed to be rigid-viscoplastic, and the die is rigid for the finite element predictions. The stress in the tension at the wrap root is known to cause brittle fracture, and the increase in the tensile stress is owing to the unbalanced filling of material into the die cavities between both sides of the warp. Based on the empirical and numerical achievements, the effects of geometrical parameters of the material on the die fracture were examined to find practical measures for elongated die life. It has been shown from the parametric study that the material with the optimized trapezoidal cross-section, which can be easily made during cutting or the optimized cylindrical billet with its eccentric placement in the die cavity, can considerably reduce the magnitude of the tensile stress around the die corner fractured, indicating that economical manufacturing with reduced number of stages and elongated die life can be realized at once using the optimized practical initial material.

A Study on Fire Characteristics in a Tall and Narrow Atrium

  • Sugawa, Osami;Takahashi, Wataru;Ohtake, Masanori;Satoh, Hiroomi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.353-360
    • /
    • 1997
  • The modeling on fire safety assessment for a tall and narrow atrium is carried out using a reduced and full scale atrium models based on the performances of flow behavior in and near comer fire and smoke ventilation system. The comer (or wall) effects on the flame behavior considering air entrainment into a flame was evaluated theoretically and experimentally. Temperature, upward velocity, inlet air velocity, and pressure difference between the atrium space and atmosphere were measured systematically in a reduced scale model. The performance of the modeling to estimate temperature rise and natural air ventilation volume was verified based on the experimental results. Smoke filling rate from a model fire source set at the center of a tall and narrow atrium is fastest in the other cases in which fire source set in or near a corner. This suggested that the centering of the fire source is acceptable as the fire source position to assess the fire safety design for a tall and narrow atrium.

  • PDF

A Study on Flashless Non-Axisymmetric Forging (플래시 없는 비축대칭 단조에 관한 연구)

  • Bae, Won-Byong;Kim, Young-Ho;Choi, Jae-Chan;Lee, Jong-Heon;Kim, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

FE Analysis on the Design Safety of Inner Tank Bottom Plate in Terms of Cryogenic Temperature Loadings (초저온 하중을 고려한 내부탱크 바닥판의 설계 안정성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.8-15
    • /
    • 2004
  • This paper presents von Mises stress, deformation, and rotating distortion moment characteristics of inner tank bottom plate as a function of a cryogenic temperature difference along the radial distance from the center area to the corner one. The calculated results show that the filling level of LNG at the beginning of the cool-down process is very important for the design safety analysis of the inner tank. Obviously the thermal loading by a temperature difference between the LNG vapor gas of $-80^{\circ}C$ and a LNG temperature of $-162^{\circ}C$ affects to the thermal related characteristics of the bottom plates and annular one. From the computed results, the temperature difference by a vapor gas and liquid of LNG may lead to the thermal instability of the bottom plate. This phenomenon may cause the system failure of an inner tank.

  • PDF