• Title/Summary/Keyword: corn seed

Search Result 165, Processing Time 0.031 seconds

Optimum Harvest Time for High Quality Seed Production of Sweet and Super Sweet Corn Hybrids

  • Lee Suk Soon;Yun Sang Hee;Seo Jung Moon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • The production of sweet (su) and super sweet corns (sh2) has been economically feasible in Korea in recent years. Major factors limiting super sweet corn production are low germination and low seedling vigor. Since seed quality is closely related to seed maturity, the optimum harvest time for the seed production of sweet and super sweet corns was studied and the quality of seeds with varying maturities was investigated in 2001 and 2002 cropping seasons. The parents of the sweet corn seeds were Hybrid Early Sunglow and 'Golden Cross Bantam 70' and those of super sweet corn were Xtrasweet 82 and 'For­tune'. Seeds were harvested at 21, 28, 35, 42, 49, and 56 days after silking (DAS). As the seeds developed, seed weight of sweet corn increased and the seed moisture content decreased faster than that of super sweet corn. Germination rates of sweet corn seeds harvested 21 and 28 DAS at $25^{\circ}C$ and emergence rates in the cold soil test were significantly lower than those of seeds harvested after 42 DAS in both years. Although the germination rates of super sweet corn seeds with varying maturities showed similar patterns as sweet corn seeds at $25^{\circ}C$, the emergence rate of super sweet corn seeds in cold soil test continuously increased with seed maturity. This suggests that seed quality of super sweet corn should be tested in a cold soil test to estimate field emergence. As the seeds developed, leakage of total sugars and electrolytes from the both sweet and super sweet corn seeds decreased up to 42 or 49 DAS. The $\alpha-amylase$ activities of both sweet and super sweet corn seeds increased with seed maturity from 21 to 35 or 49 DAS depending on genotype and year. The optimum harvest time for the seed production of sweet corn was 42 DAS and 49 DAS for super sweet corn considering emergence rate and plumule dry weight in the cold soil test, leakage of sugars and electrolytes from the seeds, and $\alpha-amylase$ activity.

Effect of Seed Priming on Quality Improvement of Maize Seeds in Different Genotypes

  • Seo Jung Moon;Lee Suk Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2004
  • In Korea, production of super sweet corn has been economically feasible and is substituting for traditional sweet corn due to better flavor in recent years. Major limiting factors for super sweet corn production are low field emergence and low seedling vigor. The optimum water potential (WP) for the priming of normal and aged seeds of dent, sweet (su) and super sweet (sh2) corns was studied to improve low seed quality. Seeds were primed at 0, -0.3, -0.6, -0.9, and -1.2 MPa of polyethylene glycol (PEG) 8000 solution at $15^{\circ}C$ for 2 days. Priming effects differed depending on the type of corn, seed quality, and WP of PEG solution. Although WP of priming solution did not influence the emergence rate of extremely high quality normal dent corn seeds, it reduced time to $50\%$ emergence (T50) and increased plumule weight. In contrast, the emergence rate of aged field corn was improved by seed priming at 0 MPa and plumule weight and $\alpha-amylase$ activity was enhanced. The optimum WP for both normal and aged sweet and super sweet corn seeds was between -0.3 and -0.6 Mpa. At the optimum WP emergence rate, $\alpha-amylase$ activity, and content of DNA and soluble protein increased, while T50 and leakage of total sugars and electrolytes reduced.

Enhancing Yield and Nutritive Value of Forage for Livestock Feeding Through Corn Soybean Intercropping Strategy with Several Pre-sowing Soybean Seed Coatings

  • Kim, Jeongtae;Song, Yowook;Kim, Dong Woo;Fiaz, Muhammad;Kwon, Chan Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • In attempt to avoid crop damage through wild bird's picking, this study was designed with aim to evaluate several pre-sowing soybean seed coatings for optimum yield in corn-soybean mixed forage. It was investigated under four cropping treatments, viz. 1) corn sole, 2) corn mixed with soybean without any coating, 3) corn with iron coated soybean and 4) corn with thiram coated soybean. Each treatment had three replicates and corn sole was control treatment. Pioneer (P1184) and crossbred ($PI483463{\times}Hutcheson$) seeds were used for corn and soybean, respectively. The trial was conducted under randomized block design from $5^{th}$ June to $23^{rd}$ September, 2015. Data were an alyzed through ANOVA technique using SAS9.1.3 software. Results depicted that survivability of soybean against wild birds damage was found better (p<0.05) in thiram coating which was higher than iron coating and control treatment but later on thiram coating had adverse effects on subsequent growth of soybean plants. Corn stalk height was decreased (p<0.05) in thiram coating, whereas corn ear height was reduced in iron coating treatment. Iron coating enhanced (p<0.05) height of soybean plant (p<0.05) better than that of thiram coating. Soybean seed coatings didn't influence dry matter yield and nutritive value in terms of total digestible nutrients yield in corn soybean mixed forage. Conclusively, although presowing thiram coating enhanced survivability of soybean plants against wild bird damage but had adverse effects on its subsequent growth. However, soybean seed coatings didn't influence yield and nutritive value of corn soybean intercropping forage.

Physicochemical Properties of the Durian Seed Starch (Durian 종자 전분의 이화학적 특성)

  • Lee, Seong-Gap;Kim, Hyeong-Su;Son, Jong-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1410-1414
    • /
    • 1999
  • The granular size and shape of durian seed starch were $2.0-10.0\;{\mu}m$ and oval and polygonal. Amylose contents of durian seed, corn, sweet potato and potato starch were 28.3%, 27.5%, 20.3% and 21.7%, respectively. Blue value of durian seed (0.370) higher than that of corn (0.368), sweet potato (0.332), and potato starch (0.338). Alkali numbers of durian seed, corn, sweet potato and potato starch were 7.39, 9.02, 7.08 and 5.43, respectively. Swelling power of durian seed starch was similar to that of sweet potato starch. X-ray diffraction patterns of durian seed starch showed an A-type crystalline structure. According to pasting properties by Rapid Visco-Analyzer, the gelatinization temperature of durian seed starch $(76.6^{circ}C)$ was higher than that of corn $(73.0^{circ}C)$, sweet potato $(72.3^{circ}C)$ and potato starch $(70.2^{circ}C)$. The breakdown of durian seed starch were lower than that of corn, sweet potato and potato starch.

  • PDF

The Effect of Prunus sargentii R. Seed Oil on the Lipid Profile in Serum in Mice (산벚나무(Prunus sargentii R.) 씨앗 기름의 섭취가 마우스의 혈중 지질 수준에 미치는 영향)

  • Choi, Kyung-Soon;Shin, Kyung-Ok;Kim, Yong-Hwan;Yoo, Il-Su;Jeong, Hun;Kim, Kyung-Sun;Lee, Jeong-Sill
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.670-677
    • /
    • 2013
  • In this study, the effects of the intake of Prunus sargentii R. seed oil on the lipid levels of mouse blood were compared to the effects of commercially available corn oils. Mice from the same purchase lot were separated into 3 groups [control (n=5), corn oil-treated group (n=5), and Prunus sargentii R. seed's oil-treated group (n=5)] of equal size. The oil-treated groups of mice were fed their respective supplemented diets for a total of 8 weeks. Prunus sargentii R. seed oil is high in palmitic acid, oleic acid, and linoleic acid. The kidney weights of mice fed Prunus sargentii R. seed oil were higher than those fed corn oil (p<0.05). The HDL-cholesterol (high density lipoprotein cholesterol) levels in mice fed Prunus sargentii R. seed oil ($124.40{\pm}20.19$mg/dl) were higher than those of mice fed corn oil (p<0.05). The total cholesterol level was highest in mice fed Prunus sargentii R. seed oil, but the LDL-cholesterol (low density lipoprotein cholesterol) level was lowest in mice fed Prunus sargentii R. seed oil. Therefore, Prunus sargentii R. seed oil may be a good resource as a natural oil material.

The Effect of Goroshoe (Acer mono Max.) Seed Oil, and Magnolia denudata Seed Oil on the Lipid Profile in Serum in Mice (고로쇠나무(Acer mono Max.) 씨앗 기름과 목련나무(Magnolia denudata) 씨앗 기름의 섭취가 마우스의 혈중 지질 수준에 미치는 영향)

  • Choi, Kyung-Soon;Shin, Kyung-Ok;Chung, Keun-Hee;Kim, Yong-Hwan;Huh, Seon-Min
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.770-778
    • /
    • 2012
  • In this study, the effects of intake of Acer mono Max. seed oil, and Magnolia denudata seed oil on the lipid levels of mouse blood were compared to those of commercially available vegetable oils. Five ICR mice were each fed a corn oil, Acer mono Max. seed oil, and Magnolia denudata seed oil supplemented diet for a total of 8 weeks. The serum profiles of mice fed Acer mono Max. seed oil and Magnolia denudata seed oil were high in palmitic acid, oleic acid, and linoleic acid. The saturated fatty acid contents of mice fed Acer mono Max. seed oil and Magnolia denudata seed oil were 3.95% and 0.88%, whereas the unsaturated fatty acid contents were 8.71% and 4.60%, respectively. The liver and spleen weights of mice fed Acer mono Max. seed oil were higher than those fed corn oil (p<0.05). Total cholesterol level was highest in mice fed Acer mono Max. seed oil (p<0.05), whereas there were no significant changes in the cholesterol levels of mice fed Magnolia denudata seed oil and corn oil. The HDL-cholesterol levels in mice fed Acer mono Max. seed oil ($175.80{\pm}27.66mg/d{\ell}$) and in those fed Magnolia denudata seed oil ($145.20{\pm}19.10mg/d{\ell}$) were higher compared to those of mice fed corn oil (p<0.05). In conclusion, there were no significant differences in fatty acid composition between mice fed Acer mono Max. seed oil and Magnolia denudata seed oil. Future study on the antioxidant effects of seed oils should be carried out.

Effect of Microwave Heat Treatment on Inhibition of Corn Seed Germination

  • Ambrose, Ashabahebwa;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.224-231
    • /
    • 2015
  • Purpose: Corn is a major commercial crop targeted for genetic modification owing to its high consumer demand as a foodstuff for humans and livestock, as well as its other industrial applications. However, the safety of genetically modified (GM) crops is controversial. Indeed, several countries have banned the importation of GM seeds that can germinate. Therefore, development of effective, convenient, and nondestructive methods to inhibit seed germination is required. Methods: This study aimed to examine the efficacy of microwave heat treatment for inhibition of germination of corn kernels and for optimization of power and exposure time required for effective aging treatment. Artificial inhibition was induced in corn kernels using microwave heat treatment. Seven power levels were examined (400, 500, 600, 700, 800, 900, and 1000 W) at each of the four exposure times (0.5, 1.0, 1.5, and 2.0 min). Results: Corn kernels could be aged effectively after heating for 0.5~1.0 min at powers greater than 800 W, with increasing efficacy observed at higher powers. Further analysis showed that the most effective inhibition of germination was observed at 1000 W for 40 s. This setting did not cause any physical damage to the corn kernels. Conclusions: Optimal inhibition of corn kernel germination was achieved using higher power for shorter times, which may be useful for industrial corn seed treatment.

The Stable Production of Organic Seed to Distribute Certified Seed of Waxy Corn Hybrid

  • Goh, Byeong-Dae;Park, Jong-Yeol;Jang, Eun-Ha;Park, Ki-Jin;Yoon, Byeong-Sung;Jang, Jin-Sun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.6-8
    • /
    • 2011
  • In order to produce the organic foods in accord with international standard, organic seeds should be used in organic farming. This study was conducted to establish the stable production of organic seed of waxy com by examining the growing characteristics, seed yield, and the economy for seed production by organic farming. The optimal sowing timing for organic seed production of waxy com hybrid was within 10 days of the $1^{st}$ of May with yield of 88~90% of conventional seed production. The optimal planting density was 41,600 plants/ha ($80{\times}30$ cm) for organic seed production of waxy com. The weight of 100 seeds and seed productivity increased at the planting ratio of 2:1 mother plant:male plant. Growth and seed production were improved by removing male plant at 7~10 days after silking. Organic fertilizer (mixed oil cake) was applied at a rate of 4~6 Mg/ha before sowing. Black plastic mulching was used for weed control. In addition, sex pheromone trap and bio-control agents were used for safe pest control and low labour cost.

Plant Oils for Improving Thermotolerance of Beauveria bassiana

  • Kim, Jae-Su;Skinner, Margaret;Parker, Bruce L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1348-1350
    • /
    • 2010
  • Conidia of Beauveria bassiana ARSEF-7060, produced in millet amended with plant oils such as sunflower, corn, or cotton seed oil, were exposed to $45^{\circ}C$ of wet heat for 90 min. Conidia from millet+corn oil medium had the highest thermotolerance [$LT_{50}$ (median survival time): 45.7 min]. The mycotized millet grains were coated with each of the same plant oils as a granular formulation and subjected to $50^{\circ}C$ of dry heat for 8 h. Corn oil coating ($LT_{50}$: 8.68 h) was superior to sunflower and cotton seed oil coatings, suggesting the feasibility of using corn oil to increase conidial thermotolerance.

Changes in Seed Vigour of Sweet and Super Sweet Corn Hybrids as Affected by Storage Conditions (단옥수수와 초당옥수수의 저장조건에 따른 종자 활력변화)

  • Lee Suk-Soon;Yun Sang-Hee;Yang Seung-Kyu;Hong Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.432-439
    • /
    • 2006
  • An experiment was conducted to characterize the seed vigour of sweet (su) and super sweet (sh2) corn seeds stored at different temperatures and relative humidities (RH). Hybrid seeds of Early Sunglow ${\times}$ Golden Cross Bantam 70 (su) and Xtrasweet 82 ${\times}$ Fortune (sh2) were stored at different temperatures ($5\;and\;15^{\circ}C$) and RH(70 and 85%) for 10 months. Results of the experiment show that seed deterioration of super sweet corn was much faster than that of sweet corn under all storage conditions. Germination rate of sweet corn seeds at $25^{\circ}C$ and emergence rate in cold test showed similar patterns. Emergence rate of super sweet corn in cold test was significantly lower than the germination rate at $25^{\circ}C$. Germination rate of both sweet and super sweet corns was positively correlated to the emergence rate in cold test, but the correlation coefficient of super sweet corn was much lower compared to the sweet corn. This implies that the viability of super sweet corn seeds should be tested in the cold test to estimate field emergence rate. Seeds of sweet corn could be stored for 5 months under all storage conditions without significant seed deterioration, while those of super sweet corn should be stored at low temperature and RH. The emergence rate of sweet corn in cold test was not correlated to the leakage of total sugars, electrolytes or ${\alpha}-amylase$ activity, while that of super sweet com was positively correlated to the ${\alpha}-amylase$ activity, negatively correlated to the leakage of electrolytes, and was not correlated to the leakage of total sugars.