• 제목/요약/키워드: core-shell structures

검색결과 95건 처리시간 0.037초

Multiform Oxide Optical Materials via the Versatile Pechini-type Sol-Gel Process

  • Lin, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1247-1250
    • /
    • 2008
  • This presentation highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process which uses the common metal salts (nitrates, acetates, chlorides etc) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as cross-linking agent to form a polymeric resin on molecular level, allowing the preparation of many forms of luminescent materials.

  • PDF

Magnetic Properties of Fe Nanoparticles Synthesized by Chemical Vapor Condensation

  • Park, C. J.;Kim, B. K.;X. L. Dong
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.228-229
    • /
    • 2000
  • Magnetic Fe nanoparticles were synthesized by CVC process using Fe(CO)$\sub$5/ as precursors. The nanoparticles have core-shell structures with uniform dispersion. For the specific purposes, the micostructures as well as the magnetic states of Fe nanoparticles can be controlled by adjusting the process parameters, such as the carrier gases, the decomposition temperature, the cooling of powder, etc.

  • PDF

샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구 (A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites)

  • 장형진;신광복;고희영;고태환
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.382-388
    • /
    • 2010
  • 본 논문은 샌드위치 복합재가 적용된 철도차량 차체 구조물을 위한 표준유한요소모델을 제시하였다. 최근 샌드위치 복합재는 높은 굽힘 강성 및 강도를 가지며 차체의 경량화와 공간 확보를 통해 에너지 효율을 향상시킬 수 있어 국내의 많은 분야에서 널리 사용되고 있다. 그러므로 복합재 철도 차량의 제작 전에 유한요소법 등을 통해 구조안전성을 검증해야 한다. 본 연구에서는 다양한 철도차량의 실제 구조시험과 같은 수직, 압축, 비틀림 하중 및 고유진동수 해석을 통해 철도차량 구조물의 표준유한요소모델을 검증 제시하였다. 그 결과, 샌드위치 패널의 굽힘 강성을 향상시키기 위한 보강 금속 프레임에는 빔 요소보다는 사각 쉘 요소가 적절하였으며, 샌드위치 패널의 허니콤 코어와 적층복합재의 경우 적층 쉘 요소와 비교하여 적층 쉘 요소와 솔리드 요소를 사용하는 것이 적절하다. 또한, 제안된 표준유한요소모델은 유한요소모델의 수정 없이 충돌모델에 적용할 수 있는 장점을 가지고 있다.

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.233-247
    • /
    • 2016
  • The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.657-668
    • /
    • 2019
  • The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • 좌용호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제 (Preparation of 40 wt.% Ag-coated Cu Particles with Thick Ag Shells and Suppression of Defects in the Particles)

  • 최은별;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.65-71
    • /
    • 2017
  • 내산화성 및 Ag 함량을 증가시킨 Cu계 필러 소재를 제조하고자 평균 직경 $2{\mu}m$의 구형 Cu 입자에 약 40 wt.% 수준으로 Ag를 코팅한 Ag 코팅 Cu 입자를 제조하여 그 내산화 거동을 분석하였다. Ethylenediaminetetraacetic acid 착화제만을 첨가하여 제조된 Ag 코팅 Cu 입자는 Ag 이온들과 Cu 원자들간의 과도한 갈바닉 치환 반응에 의한 Ag shell/Cu core 계면의 분리 및 입자 내부가 비어있는 결함 입자들이 종종 생성되어 Ag 코팅 Cu 입자의 형상이 무너지는 문제점들이 관찰되었다. 그 결과 40 wt.%의 Ag 코팅 후 결함 입자들의 총 분율은 19.88%까지 증가하였다. 그러나 hydroquinone 환원제를 추가적으로 첨가하여 40 wt.% Ag를 코팅시킨 Cu 입자들의 경우 결함 생성률이 9.01%까지 감소하였고, 표면이 매끄럽고 상대적으로 치밀한 Ag shell이 형성되면서 $160^{\circ}C$의 대기 중에서 2시간동안 노출 시에도 산화에 의한 무게 증가가 관찰되지 않아 향상된 내산화 특성을 나타내었다.

Preparation of Porous Nanostructures Controlled by Electrospray

  • Nguyen, Dung The;Nah, In Wook;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.627-631
    • /
    • 2015
  • Various solid structures were prepared by electrospray technique. In this process, liquid flows out from a capillary nozzle under a high electrical potential and is subjected to an electric field, which causes elongation of the meniscus to form a jet. In our study, by controlling the amount of polyvinyl pyrrolydone in precursor solution, the jet either disrupted into droplets for the formation of spherical particles or was stretched in the electric field for the formation of fibers. During the electrospray process, the ethanol solvent was evaporated and induced the solidification of precursors, forming solid particles. The evaporation of ethanol solvent also enhanced the mass transport of solutes from the inner core to the solid shell, which facilitated fabrication of porous and hollow structure. The network structures were also prepared by heating the collector.