• Title/Summary/Keyword: core-scale

Search Result 921, Processing Time 0.026 seconds

Definition of the neutronics benchmark of the NuScale-like core

  • Emil Fridman;Yurii Bilodid;Ville Valtavirta
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3639-3647
    • /
    • 2023
  • This paper defines a 3D full core neutronics benchmark which is based on the NuScale small modular reactor (SMR) concept. The paper provides a detailed description of the NuScale-like core, a list of expected outputs, and a reference solution to the benchmark exercises obtained with the Monte Carlo code Serpent. The benchmark was developed in the framework of the Euratom McSAFER project and can be used for verification of computational chains dedicated to 3D full-core neutronics simulations of water cooled SMRs. The paper is supplemented with a digital data set to ease the modeling process.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

Reliability and Validity of Perception on Importance of Interprofessional Core Competencies(PI-ICCP) Scale (전문직 간 핵심역량 중요성 인식 측정도구의 신뢰도와 타당도 검증)

  • Hong, Min-joo;Jeon, Min-Kyung
    • The Korean Journal of Health Service Management
    • /
    • v.13 no.4
    • /
    • pp.253-263
    • /
    • 2019
  • Objectives: This study evaluated the perception on importance of interprofessional core competencies (PI-ICCP) scale. Methods: Data were collected from 353 college students of health. Content validity was tested using the content validity index for individual items(I-CVI) and for scale(S-CVI). Criterion validity was tested using the professional competencies scale developed by Choi. Reliability was evaluated using Cronbach's coefficient alpha. The goodness-of-fit of the construct validity was determined through exploratory and confirmatory factor analyses. Results: The I-CVI of each item was .8 or higher for all items, and the S-CVI was .98. The reliability of the PI-IPCC was Cronbach's α=.98. The goodness-of-fit indices of the model were χ2=1811.54(p<.001), the comparative fit index (CFI)=.91, and root mean square error of approximation (RMSEA)=.08, which satisfied the criteria. Conclusions: The construct and criterion-related validity of the perception for PI-ICCP scale were a good fit, so the instrument is appropriate for measuring perception on importance of interprofessional core competencies. Further research will be required using this instrument to investigate perception of interprofessional core competencies of health professionals.

Development and Validation of a Measurement Scale for an Institute of Science & Technology Core Competencies (과학기술특성화대학 핵심역량 검사도구의 개발 및 타당화)

  • Kim, Gahyun;Shin, Tae Seob;Chung, Jae Young;Park, Juhyoung;Choi, Ji-Woong;Lee, Chang-Hun;Kang, Hyosang;Kwon, Min Jae
    • Journal of Engineering Education Research
    • /
    • v.23 no.5
    • /
    • pp.76-85
    • /
    • 2020
  • The purpose of this study was to develop and validate a measurement scale of core competencies for one Institute of Science & Technology's students in South Korea. Based on the school's core value and mission, items were developed through document analysis, faculty survey, and experts' review. Initial sets of items were administered to students and results were analyzed to finalize the items for the scale, which consists of 4 core competencies (Creativity, Challenge, Collaboration, and Care) and 12 sub-competencies. Through reliability analysis and exploratory factor analysis, 56 items were selected. For a validity test, confirmatory factor analysis was conducted. Results suggest that the measurement scale is reliable and valid in measuring core competencies of students in an Institute of Science & Technology.

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.

The milli-arcsecond scale radio properties of central AGNs in cool-core and non cool-core clusters

  • Baek, Junhyun;Chung, Aeree;Tremou, Evangelia;Sohn, Bongwon;Jung, Taehyun;Ro, Hyunwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.68.4-69
    • /
    • 2016
  • We report preliminary results of KaVA observations of central galaxies in cool-core and non cool-core clusters. The main goal is to study how cooling environments of galaxy clusters affect the central AGN activities especially at its innermost region. For KaVA observations, 7 radio bright AGNs have been selected from the extended Highest Flux Galaxy Cluster Sample (eHIFLUGCS; the X-ray flux limited & all sky galaxy cluster catalog) with various cooling timescales. In our previous KVN study, we have found that most AGNs in the cool-core clusters show the hint of pc-scale jet-like features while the ones in the non cool-core clusters do not. Using the KaVA 22/43 GHz data of a much higher resolution than the KVN resolution, we have investigated detailed pc-scale jet properties such as physical size, morphology, and radiative age. Based on the KaVA data, we discuss the effect of cluster cooling environment on the evolution of AGNs in the cluster center.

  • PDF

Use of an Imaging Technology for Characterizing Core-scale Multiphase Flow: Application to CO2 Geological Storage (이미징기술을 활용한 코어규모의 다상유체 유동 특성화: 이산화탄소 지중저장 연구에의 적용)

  • Kim, Kue-Young
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Imaging technologies are applied at various geological scales including pore scale, core scale and intermediate scale in order to characterize pore space of rocks as well as to map the fluid distribution in porous media. This technical report presents experimental results using core-flooding apparatus suited with imaging technology. Three different core samples, that are homogeneous, fractured and heterogeneous cores, were used to assess the two-phase fluid migration behavior as $CO_2$ displaces resident brine. We show that imaging technology can be effective in characterizing salt-precipitation, capillary pressure and spatio-temporal variation of trapping mechanisms.

Transformational Leadership and Depressive Symptoms in Germany: Validation of a Short Transformational Leadership Scale

  • Seegel, Max Leonhard;Herr, Raphael M.;Schneider, Michael;Schmidt, Burkhard;Fischer, Joachim E.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Objectives: The objective of the present study was to validate a shortened transformational leadership (TL) scale (12 items) comprising core TL behaviour and to test the associations of this shortened TL scale with depressive symptoms. Methods: The study used cross-sectional data from 1632 employees of the overall workforce of a middle-sized German company (51.6% men; mean age, 41.35 years; standard deviation, 9.4 years). TL was assessed with the German version of the Transformational Leadership Inventory and depressive symptoms with the Hospital Anxiety and Depression Scale (HADS). The structural validity of the core TL scale was assessed with confirmatory factor analysis. Associations with depressive symptoms were estimated with structural equation modelling and adjusted logistic regression. Results: Confirmatory factor analysis and structural equation modelling showed better model fit for the core TL than for the full TL score. Logistic regression revealed 3.61-fold (95% confidence interval [CI], 2.20 to 5.93: women) to 4.46-fold (95% CI, 2.86 to 6.95: men) increased odds of reporting depressive symptoms (HADS score >8) for those in the lowest tertile of reported core TL. Conclusions: The shortened core TL seems to be a valid instrument for research and training purposes in the context of TL and depressive symptoms in employees. Of particular note, men reporting poor TL were more likely to report depressive symptoms.

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1412-1420
    • /
    • 2018
  • An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.