• Title/Summary/Keyword: core structures

Search Result 1,244, Processing Time 0.025 seconds

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Damping strategies for steel lattice sandwich constructions

  • Mai, Son P.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1321-1331
    • /
    • 2015
  • A square steel sandwich plate with lattice corrugated core is explored for damping improvement. A range of damping materials are filled inside the openings provided by the corrugated core, or are applied on the surfaces of the facesheets. The dynamic properties such as natural frequency and damping factor are experimentally measured for the sandwich plate with each filling solution. The relative performance of each insertion is compared in terms of damping capacity and added mass.

Shear Lag Phenomenon in Shear/Core Wall of Wall-Frame Structures (골조-전단벽 구조에서 전단/코어벽의 Shear Lag 현상)

  • 이은진;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.215-222
    • /
    • 2001
  • This study investigates the shear lag phenomenon existing in the shear wall of the wall-frame structure. Elastic analysis of such structures is carried out using a 3-D frame analysis program. The structural parameters governing the shear lag phenomenon are wall height and thickness. The analysis shows that the overturning moment due to external lateral load is resisted by both of the shear/core wall and the external frame. Severe unstable stresses are identified in height ratio of about 0.7 The taller or thinner wall shows the smaller shear lag phenomenon.

  • PDF

Shape Optimal Design of Variable Sandwich Structure (가변 샌드위치 구조물의 형상최적설계)

  • 박철민;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.

Behavior Analysis of Fill Dam Incorporating Aging Effects (Aging효과를 고려한 필댐의 거동분석)

  • Shin, Dong-Hoon;Park, Han-Gyu;Cho, Sung-Eun;Im, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.854-859
    • /
    • 2008
  • This study describes the aging behavior of soils and its mechanism, which have been reported in the literatures mainly by Mitchell(1986) and Schmertmann(1991). It could be known that aging of soils has both positive and negative effects on mechanical properties of soils. In order to show aging effects on dam behavior, a parametric study was carried out based considering the presence of a weak area within clay core zone of the fill dam. From the comparison of results obtained from numerical analysis and filed investigation, age-softening phenomena occurred within core zone during about 30 years after its completion.

  • PDF

Analysis of Two-phase E-core Switched Reluctance Machines Using Magnetic Equivalent Circuit Technique (자기등가회로 기법을 사용한 2상 E-core SRM의 해석에 관한 연구)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1986-1989
    • /
    • 2010
  • The modification of magnetic structures for an E-core switched reluctance machine (SRM) comprising two segmented stator cores or a monolithic stator core is presented for ease of assembly, good manufacturability, mechanical robustness, and electromagnetic performance improvement. The E-core stator has four small poles with phase windings and two or four large poles (hereafter referred to as common poles), in between. The common poles are shared by both phases for positive torque generation during the entire operation. The E-core SRMs are compared to a conventional two-phase SRM. The comparison includes cost savings, torque, copper and core losses, and efficiency in order to validate the distinct features of the E-core SRMs. Magnetic equivalent circuit (MEC) technique is employed for proving the benefits of the E-core common-pole structure.

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.

Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load

  • Zhou, Hao;Guo, Rui;Bao, Kuo;Wei, Haiyang;Liu, Rongzhong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.837-847
    • /
    • 2019
  • A type of hybrid core made up of thin-walled square carbon fiber reinforced polymer (CFRP) honeycomb and Polymethacrylimide (PMI) foam fillers was proposed and prepared. Numerical model of the core under quasi static compression was established and validated by corresponding experimental results. The compressive properties of the core with different configurations were analyzed through numerical simulations. The effect of the geometrical parameters and foam fillers on the compressive response and energy absorption of the core were analyzed. The results show that the PMI foam fillers can significantly improve the compressive strength and energy absorption capacity of the square CFRP honeycomb. The geometrical parameters have marked effects on the compressive properties of the core. The research can give a reference for the application of PMI foam materials in energy absorbing structures and guide the design and optimization of lightweight and energy efficient cores of sandwiches.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF