• 제목/요약/키워드: core losses

검색결과 215건 처리시간 0.029초

Fe-B-Si 비정질 권철심의 경년 열화 연구 (Aging of Amorphous Fe-B-Si Wound Cores)

  • 민복기;송재성;강영호;강원구
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.432-436
    • /
    • 1994
  • The aging characteristics of amorphous FeS178TBS113TSiS19T wound cores have been investigated as a function of aging temperature and time. The core losses(1.2T/60Hz) of amorphous wound cores dipped in transformer oil decrease in comparision with initial stage of aging test due to insulation of ribbon stacks by oil penetration. It is estimated that it takes 30 years or more for 10% increase in core losses (1.2T/60Hz) of amorphous wound cores aged at normal transformer running temperature(100$^{\circ}C$). So we condlude that the amorphous core is satisfactorily applicable to transformer.

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

자성웨지를 이용한 유도전동기의 특성에 관한 연구 (A Study on Characteristics of induction Motor using the magnet wedge)

  • 홍성일;배병춘;유우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.607-611
    • /
    • 1992
  • This paper presents the methods in improving the efficiency using of magnet wedge. After the energy crises of 1970's, more emphasis was placed on higher efficiencies. Efficiency of an induction motor can be improved by reducing the total losses, copper, losses, iron or core losses etc. However high efficiency designs result, in larger size and cost than standard motors. In the methods of the reducing the losses, ripple losses of slot flux can be reduced by using the magnet wedge, but the starting torque decrease by means of increasing of leakage reactance.

  • PDF

집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감 (Core-loss reduction on PM for IPMSM with concentrated winding)

  • 이형우;박찬배;이병송;김남포
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

자기등가회로 기법을 사용한 2상 E-core SRM의 해석에 관한 연구 (Analysis of Two-phase E-core Switched Reluctance Machines Using Magnetic Equivalent Circuit Technique)

  • 이치우
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.1986-1989
    • /
    • 2010
  • The modification of magnetic structures for an E-core switched reluctance machine (SRM) comprising two segmented stator cores or a monolithic stator core is presented for ease of assembly, good manufacturability, mechanical robustness, and electromagnetic performance improvement. The E-core stator has four small poles with phase windings and two or four large poles (hereafter referred to as common poles), in between. The common poles are shared by both phases for positive torque generation during the entire operation. The E-core SRMs are compared to a conventional two-phase SRM. The comparison includes cost savings, torque, copper and core losses, and efficiency in order to validate the distinct features of the E-core SRMs. Magnetic equivalent circuit (MEC) technique is employed for proving the benefits of the E-core common-pole structure.

변압기 철심용 Fe-B-Si비정질 합금의 철손 특성 (Core Losses of Amorphous Fe-B-Si Alloy for Transformer Core)

  • 김기욱;송재성;홍진완;강원구
    • 대한전기학회논문지
    • /
    • 제40권1호
    • /
    • pp.67-72
    • /
    • 1991
  • For improving the magnetic properties of the amorphous Fe-B-Si alloy, we annealed the sample in a magnetic field oriented in the plane of the ribbon longitudinal to its long axis. By field annealing, coercive force and total core loss are reduced from 0.04 Oe to 0.02 Oe, and from 0.25 watt/kg to 0.15 watt/kg respectively in comparsion with non-field annealed specimen. These reductions were caused by the formation of 180 dcmain wall parallel to the annealing field due to the induced anisotropy.

재질이 변압기 절연유의 유동대전에 미치는 영향

  • 곽희로;김재철;김두석;권동진
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제5권3호
    • /
    • pp.72-77
    • /
    • 1991
  • In a large power transformer, insulating oil is forced to circulate for cooling the heat generated by the losses within windings and core. When insulating oil flows and rubs against various materials, such as insulating paper or core, the electrostatic charges are separated at the interface of the oil and the solid material. This paper considers the streaming electrification of various materials used in the transformer. In this study, we show that a solid material such as paper is negatively charged. On the other hand, a solid material such as core is positively charged.

  • PDF

능동 클램프형 포워드 DC-DC 컨버터의 효율에 관한 연구 (A Study on Efficiency of Active Clamp Type Forward DC-DC Converter)

  • 안태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.351-357
    • /
    • 2004
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for switching power supplies. In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the switching power supply that includes all the parasitic resistances of the circuit components. While the winding losses and core losses are accurately accounted for the magnetic components, the skin and proximity effects are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype active-clamped forward converter with synchronous rectification. An excellent correlation between the experiments and theories are obtained for the input voltages of 36-75 V with 4-6 MOSFETs employed for the synchronous rectification.

전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (2) - 전자기 손실 해석 및 성능 평가 - (Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (2) - Electromagnetic Losses and Performance Analysis -)

  • 고경진;장석명;최장영
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.50-62
    • /
    • 2011
  • In this paper, analytical techniques for performance characteristics analysis of wind power generator with outer permanent magnet rotor are proposed. Furthermore, the proposed analytical techniques are validated by performance experiments of the manufactured generator. In this part, characteristic equations of losses such as copper loss, core loss are derived. Using the derived loss characteristic equations, electrical parameters obtained in [15] and d-q axes method, constant load and constant speed characteristics of wind power generator are analyzed. And then, to analyze performance of wind power system according to wind speed, d-q analysis model considering wind turbine characteristics is proposed. Finally, the obtained performance characteristics results are validated in comparison with those by experiments.