• Title/Summary/Keyword: copulsation

Search Result 2, Processing Time 0.024 seconds

Algorithm of Copulsation Estimation for Counterpulsation using Pressure of VAD Outlet Cannula

  • Kang Jung-Soo;Lee Jung-Joo;Jung Min-Woo;Park Yong-Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • The ventricular assist device(VAD) helps to reduce the overload against the patient's native heart(NH). The pulsatile VAD pumps out the ventricular blood to the aorta with pulsatile flow. If the VAD pulsates simultaneously with the NH, the ventricle of the NH could confronts abnormally elevated aortic pressure, and this could deteriorate the ventricle rather than assist to recover it. Thus counterpulsation algorithms to avoid copulsation have been adopted by many VADs, but these methods utilize electrocardiography or arterial pressure signals, which may have difficulties to acquire consistently for a long period. In this study, the copulsation estimation algorithm for the counterpulsation is developed using the VAD outlet pressure signal. The VAD outlet pressure signal is good to maintain for a long time and the sensor part could be integrated to the VAD as a built-in module. From the VAD outlet pressure signal and its pump rate information calculated with Fast Fourier Transform, pulse peaks by the VAD and the NH were extracted and the next copulsation time at which the VAD and the NH would pulsate simultaneously was estimated. This estimation algorithm was implemented by using PC MATLAB software and tested for various pump rate conditions with mock circulation system. For each condition, the copulsation time was estimated successfully. Consequently, the results showed the possibility to use the outlet cannula pressure signal in the copulsation estimation.

Numerical Study of Effect of counter-pulsation on Hemodynamic Response in the ECLS (체외생명구조장치에서 역박동 방법이 혈류역학 응답에 미치는 영향에 대한 수치적 연구)

  • Kim, In-Su;Lim, Ki-Moo;Choi, Seoung-Wook;Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1660-1664
    • /
    • 2008
  • Extra-corporeal Life Support System (ECLS) is the device used in emergency cases to substitute a extracorporeal circulation in open heart surgery, cardiac arrest or in acute cardiopulmonary failure. To obtain the effect of counter-pulsation on hemodynamic response in the ECLS quantitatively, we developed cardiovascular model which consists of 12 compartment model of heldt et al. and 3 compartment model of Schreiner et al. based on windkessel approximation. We compared coronary perfusion, arterial pulse pressure, cardiac output, and left ventricular pressure-volume diagram according to flow configuration such as counter-pulsation, copulsation, and continous flow. When counter-pulsation was applied, 5% higher coronary perfusion, 26% lower pulse pressure, and 2% higher cardiac output than copulsation condition were calculated. We conclude that counter-pulsation configuration in the ECLS is hemodynamically more stable than copulsation and influences the positive effect to recover ventricles.

  • PDF