Growth characteristics of six lactic acid bacteria in whey-soy milk mixtures were investigated to obtain basic informations for processing cheese-like product by coprecipitation of whey and soy proteins. Streptococcus cremoris and Lactobacillus acidophilus produced more aicd than other lactic acid bacteria both in whey-soy milk mixture and in soy milk. Lactic acid fermentation was accelerated in whey-soy milk mixture than in soy milk with all the lactic aicd bacteria, and specially with S. lactis and S. cremoris in great extent. The number of viable cell of 1:1 mixed culture of S. lactis and S. cremoris in whey soy milk mixture was about 10 times than in soymilk. It was mainly the effect of lactose in the whey that increased the acid production by lactic aicd bacteria in whey-soy milk mixture although the degree of acceleration depended on the ability of microorganism to use carbohydrates. The optimum amount of lactose added to soy milk to accelerate the acid production was 0.8g/100ml soy milk.
Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).
Prussian blue analogues(PBAs) are comprised of cyano-bridged transition metal ions. The wide and unique open-framework structures of the PBAs enable reversible intercalation and deintercalation of various ions such as $Na^+$, $K^+$, $Mg^{2+}$, $Zn^{2+}$, etc. In addition, since PBAs are synthesized through coprecipitation reaction in aqueous solution at room temperature, they are produced economically and environmentally friendly. However, the formation of crystals proceeds rapidly, and defects such as vacancy and crystal water tend to be present in the crystals, thereby affecting key battery performance. Therefore, significant efforts to inhibit defects in PBAs have been made. In the case of vacancy, the reaction rate was controlled at the synthesis stage to reduce the formation of vacancy, and the crystal water was removed by heat treatment under vacuum. In addition, by adding transition metals that do not react within the structure of PBA, the structural instability during the electrochemical reaction was largely alleviated.
Journal of Korean Society of Water Science and Technology
/
v.26
no.6
/
pp.13-26
/
2018
This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.
Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.
Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.
Layered double hydroxides ($Mg-Al-CO_3$ systems, LDH), which are hydrotalcite-like anionic clay minerals, having different $Mg^{2+}\;to\;Al^{3+}$ ratio were synthesized by coprecipitation method. The subsequent products were characterized by the following methods; elemental analysis, X-ray powder diffraction, thermal analysis (DSC and TGA), FT-IR and $^{27}$Al-MAS NMR. X-ray powder patterns showed that the products formed were layered structure materials. Two heat absorption peaks were observed around 20 ∼280$^{\circ}C$ (surface water and interlayer water) and 280∼500$^{\circ}C$ (water from lattice hydroxide and carbon dioxide from interlayer carbonate) in DSC diagrams, and they were quantitatively analyzed by TGA diagrams (in case LDH4 16.2% and 28.6% respectively). FT-IR spectra indicate that the interlayer carbonate ions occupied symmetrical sites between two adjacent layers in a parallel direction. $^{27}$Al-MAS NMR spectra show only single resonance (8.6 ppm) of the octahedrally coordinated aluminum similar magnesium. When LDH4 was calcined at 560$^{\circ}C$ for 3 hours in air, its layered structure was destroyed giving a mixed metal oxide. However it readily became rehydrated in aqueous chromate solution to its original structure.
The main purposes of this study are to utilize mineralogical studies such as optical microscope, XRD and SEM/EDS analyses to characterize the oxidation of sulfide minerals and the mechanisms controlling the movement of dissolved metals from waste rocks at the abandoned Seobo mine. Mineralogical research of the waste rocks confirms the presence of anglesite, covellite, goethite, native sulfur and nsutite as secondary minerals, suggesting that these phases control the dissolved concentrations of As, Cu, Fe, Mn, Pb and Zn. The dissolved metals are precipitated, adsorbed and/or coprecipitated with(or within) Fe(Mn)-hydroxides and Mn(Fe)-hydroxides. The main phases of secondary mineral, Fe-hydroxide, can be classified as amorphous or poorly crystalline and more crystallized phases(e.g. goethite) by crystallinity. Amorphous or poorly crystalline Fe-hydroxide has relatively high As contents(9-24 wt.%). This poorly crystalline Fe-hydroxide changes toward more crystallized phase(e.g. goethite) which contains relatively low As(0.6-7.7 wt.%). These results are mainly due to the progressive release of As with the crystallization evolution of the As-trapping poorly crystalline Fe-hydroxides. It is also attributed to the differences of specific surface areas between the poorly crystalline Fe-hydroxides and well crystallized phases. The dissolved metals from waste rocks at Seobo mine area are naturally attenuated by a series of precipitation(as Fe, Mn, Cu, Pb), coprecipitation(Fe, Mn) and adsorption(As, Cu, Pb, An) reactions. The results of mineralogical researches permit to assess the environmental impacts of mine waste rocks in the areas, and can be used as a useful data to lay available mine restoration plan.
A series of catalysts, $NiO-ZrO_2/WO_3$, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and $WO_3$ to $ZrO_2$ shifted the transition of $ZrO_2$ from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or $WO_3$) and $ZrO_2$. $NiO-ZrO_2$ without $WO_3$ was inactive for the ethylene dimerization, but $NiO-ZrO_2/WO_3$ was found to be very active even at room temperature. The high catalytic activity of $NiO-ZrO_2/WO_3$ was closely correlated with the increase of acid strength by the inductive effect of $WO_3$.
$Pb(NO_3)_2$, $Mg(NO_3)_2$ and $NbCl_5$ were used as starting materials and made into solutions. For $Pb(Mg_{1/3}Nb_{2/3})O_3$ composition, each solution measured was mixed and heated to $70^{\circ}C$ to resolved $PbCl_2$ precipitated at lower temperature coprecipitates were formed by adding oxine and ammonia gas under pH ranging 8 to 10, and the prepared coprecipitates were filtered and washed by distilled water. The $Pb(Mg_{1/3}Nb_{2/3})O_3$ powders were synthesized by calcination of coprecipitates at the temperature range of $700^{\circ}C$ to $1000^{\circ}C$, for 5hr. The average particle size of the synthesized powders showing spherical shape was $0.3{{\mu}m}$. The powders were formed to make pellets under pressure of $2000Kg/cm^2$, and the formed pellets were sintered at the temperature range of 1100 to $1200^{\circ}C$, for 5hr. The speciman sintered at $1200^{\circ}C$ showed theoretical density of 97.4%, dielectric constatnt of 17000 at 1kHz, and dielectric loss of 0.02% at 1kHz
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.