• 제목/요약/키워드: copper tube

검색결과 264건 처리시간 0.02초

수직냉각관내에서 상변화물질의 응고에 관한 실험적 연구 (An Experimental Study on Freezing of Phase Change Material in a Cooled Vertical Tube)

  • 이재목;이채문;임장순
    • 대한설비공학회지:설비저널
    • /
    • 제13권4호
    • /
    • pp.223-229
    • /
    • 1984
  • Experiments were performed for freezing of an initially superheated or nonsuperheated liquid phase in a cooled vertical tube. The liquid was placed in a copper tube whose surface maintained a uniform temperature during the data run and the freezing occurred in a copper tube. The phase change medium was n-odtadecane, a paraffin which freezes at about $61^{\circ}C$. Measurements were made which yielded information about the time dependence of the freezing front, of the amount of frozen mass, and of the various energy components extracted from the tube. The time-wise decay of the initial liquid superheat was also measured. Initial superheat of the liquid tends to moderately diminish the rozen mass and associated latent energy extraction at small times but has lit tie effect on these quantities at large tiems. Natural convection in the liquid Plays a modest role only at small times and disappears when the superheat decay to zero. Although the latent energy constitutes the largest contributor to the total extracted energy, the sensible energy components can make a significant contribution, especially at large tube wall subcoolings, large initial liquid superheating and short freezing time.

  • PDF

해수냉각시스템용 Aluminium Brass Tube의 R-134a 증발열전달 특성 (Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a)

  • 강인호;설성훈;윤정인;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.197-201
    • /
    • 2017
  • 대부분의 어선에서는 포획된 어류를 관리하고 저장하기 위해 얼음 냉각 시스템을 사용한다. 그러나 얼음 냉각 시스템은 작동 시간의 제한뿐만 아니라 적절한 온도와 염분 농도를 유지하는 것이 어려운 단점이 있다. 본 연구의 목적은 어류 운반선의 어창에 적정한 해수온도 유지를 위한 해수 냉각 시스템용 만액식 증발 열전달 특성을 파악하는데 있다. 실험은 냉매의 해수 온도, 유량 및 포화 온도의 변화를 주며 열전달 특성을 파악하였다. 동일 열유속에서 Aluminium-Brass tube가 Copper-Nickel tube 보다 외측 열전달계수가 약 10% 큰 것으로 확인할 수 있었으며, 이를 통해 해수용 열교환기의 전열관으로 Aluminium-Brass를 적용하는 것이 열전달 측면에서 효과적일 것을 확인할 수 있었다. 만액식 단관 열전달계수와 18 kW급 만액식 해수냉각시스템의 총괄열전달계수의 비교를 통해 동일 조건에서는 25%정도 단관의 열전달계수가 큰 값을 나타내었으며, 이러한 결과는 만액식 관군 열교환기의 설계를 위한 중요한 자료가 되리라 판단된다.

Study on the evaporation Heat Transfer Characteristics of R-134a in Small Diameter Tubes

  • Roh, Geon-Sang;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.224-234
    • /
    • 2007
  • Large diameter tubes have been used until comparatively lately. However, small diameter tubes are largely used because of their high efficiency in heat transfer and low cost, recently. This study focuses on the experimental research of the heat transfer coefficients during evaporation process of R-22 and R-134a in small diameter tubes. The evaporation heat transfer coefficients were measured in smooth horizontal copper tubes with ID 1.77, 3.36 and 5.35 mm. The evaporation heat transfer coefficients in the small diameter tubes (ID <7 mm) were observed to be strongly affected by the size of tube diameters and to differ from those of general predictions in the large diameter tubes. The heat transfer coefficients of ID 1.77 mm copper tube were higher by 20 and 30 % than those of ID 3.36 mm, ID 5.35 mm copper tubes respectively. Also, it was found that it was very difficult to apply some well-known previous predictions (Shah's, Jung's. Kandlikar's and Oh-Katsuda's correlation) to small diameter tubes. Based on the data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.

동관 벤딩을 위한 열처리로 설계 및 성능평가에 관한 연구 (A Study on the Performance Evaluation of Heat Treatment Furnace Design for Copper Tube Bending)

  • 박대광;김재열;고가진
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.136-144
    • /
    • 2016
  • The air-conditioning industry is closely related to types of lifestyles, climate, and products. With the improvement of national income, the pursuit of pleasant living and working environments, and South Korea's four seasons and distinct climatic conditions, demand for air conditioning has increased. In addition, the industry is becoming increasingly precise and cooperative, and the increase in the domestic production of sophisticated air conditioning and continued growth of future industrial cooperation are expected to rapidly rise. Accordingly, the study of air piping systems can improve the productivity and quality of products and cost savings and can achieve vibration reduction. Additionally, using a heat treatment furnace for copper tube annealing treatment reduces the risk of using an oxy-acetylene torch.

고준위 방사성폐기물 처분장에서 벤토나이트 완충제에 대한 열-수리-화학 작용 개념 모델링 (Conceptual Modeling Coupled Thermal-Hydrological-Chemical Processes in Bentonite Buffer for High-Level Nuclear Waste Repository)

  • 최병영;류지훈;박진영
    • 방사성폐기물학회지
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method)

  • 이성희
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

Wilson plot기법을 이용한 2중관식 대향류 열교환기의 단상 열전달에 관한 연구 (A study on the single-phase heat transfer in a counter-flow double-pipe heat exchanger by Wilson plot technique)

  • 엄기찬
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.93-100
    • /
    • 2006
  • An experimental study of a counterflow heat exchanger was performed. The heat exchanger had an effective heat transfer length of 1000mm and was operated in a counterflow arrangement with hot water($30{\pm}0.5^{\circ}C$, $Re_i=3500{\sim}20000$) in the inner tube(copper tube, $d_0=9.52mm$) and cold water($15{\pm}0.5^{\circ}C$, $Re_{DH}=10700{\sim}39000$) in the annulus(copper tube, $D_0=19.05mm$). Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. The inner Nusselt number was compared with that of Gnielinski's correlation and they agreed within ${\pm}10%$ error. The trends were typical for a fluid-to-fluid heat exchanger with the overall heat transfer coefficient increasing with both inner and annulus flow rates. In the range of this experiment, Nusselt numbers for the inner tube flow were almost identical with those of the annulus flow at the same Reynolds number.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.

전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험 (Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber)

  • 이미선;배재성;황재혁;임재혁
    • 항공우주시스템공학회지
    • /
    • 제6권1호
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

An Experimental Study on the Convection Heat Transfer of Al-Mg/water Micro Fluid in a Circular Tube with Swirl

  • Chang, Tae-Hyun;Kim, Chiwon;Kil, Sang-Cheol;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.869-875
    • /
    • 2012
  • In the past decades, extensive studies on convection heat transfer on internal flow have been conducted by using high specific surface area, by increasing heat transfer coefficient and swirl flow, and by improving the transport properties. In this study, we applied a tangential slot swirl generator to improve heat transfer in a horizontal circular copper tube. The Al-Mg particles (approximately $100{\mu}m$ to $130{\mu}m$) were employed for this experimental work. The copper tube was heated uniformly by winding a heating coil with a resistance of 9 ohm per meter for heat transfer. Using Al-Mg particles, experiments were performed in the Reynolds number range of 5,000 to 13,130, with and without swirl. Experimental data transfers or comparisons between Nusselt numbers with and without swirl along the test tube and Reynolds numbers are presented. The Nusselt number is improved by increasing Reynolds numbers or swirl intensities along the test tube.