• Title/Summary/Keyword: copper stress

Search Result 291, Processing Time 0.033 seconds

Isolation and Characterization of Malate Dehydrogenase Gene from Panax ginseng C.A. Meyer (고려인삼에서 Malate Dehydrogenase 유전자의 분리 및 분석)

  • Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;In, Jun-Gyo;Lee, Bum-Soo;Min, Byung-Hoon;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • Malate dehydrogenase is a ubiquitous enzyme in plants, involving in a range of metabolic processes depending on its subcellular location. A malate dehydrogenase (PgMDH) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The deduced amino acid sequence of PgMDH showed high similarity with the NAD-dependent mitochondrial malate dehydrogenase from Glycinemax (P17783), Eucalyptus gunnii (P46487), and Lycopersicon esculentum (AAU29198). And the segment of a malate dehydrogenase gene was amplified through RT-PCR. The expression of PgMDH was increased after treatments of chilling, salt, UV, cadmium or copper treatment.

Discretized solenoid design of a 1.5 T and a 3.0 T REBCO whole-body MRI magnets with cost comparison according to magnetic flux

  • Wonju Jung;Geonyoung Kim;Kibum Choi;Hyunsoo Park;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.75-80
    • /
    • 2023
  • Rare earth barium copper oxide (REBCO) materials have shown the possibility of high-temperature superconductor (HTS) magnetic resonance imaging (MRI) magnets due to their elevated transition temperature. While numerous MRI magnet designs have emerged, there is a growing emphasis on estimating the cost before manufacturing. In this paper, we propose two designs of REBCO whole-body MRI magnets: (1) 1.5 T and (2) 3.0 T, the standard center field choices for hospital use, and compare their costs based on conductor usage. The basis topology of the design method is based on discretized solenoids to enhance field homogeneity. Magnetic stress calculation is done to further prove the mechanical feasibility of their construction. Multi-width winding technique and outer notch structure are used to improve critical current characteristic. We apply consistent constraints for current margins, sizes, and field homogeneities to ensure an equal cost comparison. A graph is plotted to show the cost increase with magnetic flux growth. Additionally, we compare our designs to two additional MRI magnet designs from other publications with respect to the cost and magnetic flux, and present the linear relationship between them.

Simulation of the Extrusion Process of Cu-10wt%Fe Alloy using Finite Element Analysis (유한요소해석을 이용한 Cu-10wt%Fe 합금의 압출공정 모사)

  • T. H. Yoo;K. Thool;S.-H. Choi
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.50-54
    • /
    • 2024
  • In this paper, the process of extruding Cu-10Fe alloy using a finite element analysis (FEA) was theoretically analyzed. To achieve this, the dependence of strain rate and temperature of the alloy required for the extrusion process was secured by utilizing databases for Cu and Fe and the KHL model. For microstructure analysis, FE-SEM with EDS was used to distinguish the phases present in Cu-10Fe alloy. The mechanical characteristics of Cu-10Fe alloy were secured using the results of fitting the mechanical properties of Copper and Steel from the Deform database to the KHL model. The deformation behavior within the alloy during hot extrusion was analyzed, providing insights into effective stress, effective strain, effective strain rate, and temperature. It was observed that the strain distribution was non-uniform. These research findings contribute to an improved understanding of the hot extrusion process of Cu-10Fe alloy and can aid in predicting the mechanical properties of the material.

Effects of Dietary Supplementation of Copper Soy Proteinate (Cu-SP) and Herbal Mixture (HBM) on the Performance, Blood Parameter and Immune Response in Laying Hens (Copper Soy Proteinate(Cu-SP)와 Herbal Mixture(HBM)의 급여가 산란계의 생산성, 혈액성상 및 면역체계에 미치는 영향)

  • Kim, Chan Ho;Kang, Hwan Ku;Bang, Han Tae;Kim, Ji Hyuk;Hwangbo, Jong;Choi, Hee Cheol;Paik, In Kee;Moon, Hong Kil
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.323-329
    • /
    • 2014
  • The objective of this experiment was to investigate the effect of dietary supplementation of copper-soy proteinate (Cu-SP) and herbal mixture (HBM) on growth performance, blood parameter, and immune response in laying hens. A total 800 Hy-Line Brown laying hens (60 weeks old) were randomly allotted to 1 of 4 dietary treatments : (1) Control : control diet, (2) Cu-SP : control diet + 100 mg/kg Cu-soy proteinate, (3) HBM : control diet + 0.15% herbal mixture, and (4) Cu-SP + HBM : control diet + 100 mg/kg Cu-soy proteinate + 0.15% herbal mixture. Each treatment was replicated 5 times with forty birds units were arranged according to randomized block design. Feeding trial lasted 5 weeks under 16L : 8D lighting regimen. The diet and water were available ad libitum. Result indicated that during feeding trial of the experiment, hen-day egg production was significantly (P<0.05) higher in Cu-SP and HBM treated groups than control. However, feed intake, feed conversion ratio, egg weight, broken and shell less egg production were not significantly influenced by treatments. Eggshell strength was significantly (P<0.05) higher in Cu-SP than control. Eggshell thickness, eggshell color, egg yolk color, Haugh unit were not significantly influenced by treatments. The level of WBC and stress index (heterophil : lymphocyte) were higher in supplemented groups than the control. The concentration of plasma IgG was higher in supplemented groups than the control. The result of this experiment showed that dietary copper-soy proteinate or herbal mixture tended to improve egg production and affect positively on immune response of laying hens.

Gene Structure and Altered mRNA Expression of Metallothionein in Response to Metal Exposure and Thermal Stress in Miho Spine Loach Cobitis choii (Cobitidae; Cypriniformes) (미호종개 metallothionein 유전자의 구조 및 중금속 노출과 고온 자극에 대한 MT mRNA의 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Gene and promoter structures of metallothionein(MT) from Miho spine loach (Cobitis choii; Cypriniformes) were characterized, and the transcriptional responses to experimental exposures to heavy metals and heat stress were examined. The C. choii metallothionein displayed well-conserved features of teleostean metallothioneins at gDNA, mRNA and amino acid levels. Bioinformatic analysis predicted that the C. choii MT regulatory region potentially possessed various motifs or elements targeted by various transcription factors associated with metal-coordinating regulation (e.g., metal transcription factor-1), immune responses (e.g., nuclear factor kappa B), and thermal modulations (e.g., heat shock factor). Acute heavy-metal exposures to 0.5 or $1.0\;{\mu}M$ of cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) or zinc (Zn) showed that MT transcription was significantly stimulated by Cd (9.6-fold relative to non-exposed control) and Cu (10.4-fold), only moderately by Mn (2.4-fold), but hardly by Ni and Zn. Elevation of water temperature from $25^{\circ}C$ to $31^{\circ}C$ caused a rapid modulation of MT mRNAs toward upregulation to 9.5-fold; however, afterward the elevated mRNA level slightly decreased during further incubation at $31^{\circ}C$ for 6 h. Results from this study suggest that MT-based expression assay could be a useful basis for better understanding the metal- and/or heat-caused stresses in this endangered fish species.

Evaluation of Fracture Toughness of Copper Thin Films by Combining Numerical Analyses and Experimental Tests (해석과 실험을 결합한 구리 박막의 파괴인성 평가)

  • Kim, Hyun-Gyu;Oh, Se-Young;Kim, Kwang-Soo;Lee, Haeng-Soo;Kim, Seong-Woong;Kim, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • In this paper, a method of combining numerical analyses and experimental tests is used to evaluate fracture toughness of copper thin films of $15{\mu}m$ thickness. Far-field loadings of a global-local finite element model are inversely estimated by matching crack opening profiles in experiments with numerical results. The fracture toughness is then evaluated using the J-integral for cracks in thin films under far-field loadings. In experiments, Cu thin films attached to Aluminum sheets are loaded indirectly, and crack opening profiles are observed by microscope camera. Stress versus strain curves of Cu thin films are obtained through micro-tensile tests, and the grain size of Cu thin films is observed by TEM analysis. The results show that the fracture toughness of Cu thin films with $500nm{\sim}1{\mu}m$ sized grains is $6,962J/m^2$.

Levels of Serum Antioxidant Minerals and Enzyme Capacities of Korean Male Patients with Coronary Artery Disease (한국 남성 관상동맥질환자의 혈청 항산화 무기질 수준과 효소 활성)

  • Shim, Eu-Gene;Kim, Soo-Yeon;Chung, Eun-Jung;Cho, Seung-Yun;LeeKim, Yang-Cha
    • Korean Journal of Community Nutrition
    • /
    • v.12 no.4
    • /
    • pp.396-404
    • /
    • 2007
  • Increased oxidative stress contributes to the progression of atherosclerosis. We measured serum antioxidant mineral concentrations, capacities of serum antioxidant enzymes and fasting lipid profile in 97 male patients with coronary artery disease (CAD) and 21 male controls. Nutrient intake was assessed by the semi-quantitative food frequency method. CAD patients were divided into single-vessel disease (SVD, n=66) and multi-vessel disease (MVD, n = 31) groups on the coronary angiography. The ratio of serum LDL- to HDL-cholesterol elevated with an increasing number of diseased vessels compared to the control (control < SVD < MVD, p < 0.05). Patients with SVD and MVD had higher levels of serum lipoprotein (a) than the control (p < 0.05). The mean intake of carbohydrate, protein and cholesterol was higher in MVD patients and the intakes of vitamins C and E were lower in MVD and SVD patients than in the control (p < 0.05). Serum copper (Cu) and zinc (Zn) levels were higher in MVD and SVD patients than in the control (Cu: control $75.8{\pm}5.07$, SVD $99.2{\pm}2.90$, MVD $100.1{\pm}2.32{\mu}g/dL$, p<0.01; Zn: $76.8{\pm}5.36$, $119.0{\pm}5.95$, $129.1{\pm}2.70{\mu}g/dL$, p < 0.01). And the ratio of Zn to Cu was higher in SVD and MVD patients than in the control (control $0.78{\pm}0.06$, SVD $0.88{\pm}0.05$, MVD $0.99{\pm}0.04$, P < 0.05). The activity of glutathione peroxidase (GSH-Px) was lower in MVD than in SVD and the control (control $35.13{\pm}1.34$, SVD $35.30{\pm}1.01$, MVD $31.00{\pm}1.04 U/mg$ protein, p < 0.05). The ratio of the activities of superoxide dismutase (SOD) to GSH-Px was higher in MVD than in control and SVD (p < 0.05). In groups with CAD, serum Cu and Zn concentrations and their ratio were changed compared to the control. GSH-Px activity was decreased and the ratio of SOD to GSH-Px was increased in the patients with MVD. The balances between the activities of SOD and GSH-Px should also be considered a risk factor in CAD patients.

Study on the Potential of Phytoremediation using Wild Plants for Heavy Metal Pollution (중금속 오염에 대한 Phytoremediation 용 야생식물 연구)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak;Kim, Kwang-Ho;Chung, Il-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 1998
  • The potentials of some Korean wild plants as a phytoremediator for cleaning heavy metal pollution were measured. Several plant species, Ambrosia trifida, Brassica juncea, Rumex crispus, and Abutilon theophrasti screened previously for phytoremediator were treated with cadmium and copper solution. In order to know the growth response to heavy metal stress, the plants were cultivated in hydroponic system containing heavy metals with different concentration. To know the effects of heavy metals on emergence and seedling growth, seeds of 4 species were sown in the pot and watered with heavy metal solution adjusted pH to 6.5, 5.5, and 4.5. A proposed species as potential phytoremediator, A. trifida, showed tolerance to $20{\mu}mol/L$ Cd and $80{\mu}mol/L$ Cu in nutrient solution without apparent growth reduction, and up to $100{\mu}mol/L$ Cd and $400{\mu}mol/L$ Cu without critical visual injury. Up to 311mg/kg of Cd and 369mg/kg were accumulated in dried aerial part in A. trifida. In contrast, A. theophrasti showed injury at $400{\mu}mol/L$ Cu. Significant differences were shown in Cu accumulation among the four species. A. trifida had much higher concentrations of Cd in the shoot, whereas R, crispus accumulated higher concentrations of Cd in the shoot. Testing plant species showed reduced emergence rate with heavy metal treatment. When pH was lowered, the emergence and seedling growth were affected severely with heavy metal. We can suggested that A. trifida was the most proper species for phytoremediation in heavy metal-polluted regions.

  • PDF

A Study on the Strength Safety of Valve Structure for LPG Cylinder (LPG 용기용 밸브 구조물의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.27-31
    • /
    • 2014
  • This paper presents a study on the strength safety of the weak parts at Part 1, Part 2 and Part 3 in the valve structure for LPG cylinder by using the finite element method. The maximum Von Mises stress of 27.5MPa was occurred at the corner edge of a valve Part 1 for the valve thickness of 1.5mm and LPG pressure of 3.5MPa. And the maximum Von Mises stresses for the valve thickness of 1.5mm and LPG pressure of 3.5MPa were 41.5MPa at Part 2 and 46.5MPa at Part 3. The FEM computed results show that the maximum Von Mises stresses at Part 1, Part 2 and Part 3 are very low value of 9.2~15.5% compared with the yield strength of a copper alloy, C3604. This means that the valve thickness for LPG cylinder is so over designed for the conventional valve. Thus, this paper recommends that the thickness at Part 1 and Part 2 is reduced for a light weight of a copper valve. But, the thickness at Part 3 may be better for a thick valve as a conventional valve for high torque strength.

Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius (분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가)

  • Kim, Won-Seok;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Heavy metals are common pollutants in the freshwater environment and have toxicological effect in habitat organisms. The heavy metals highly accumulated in sediment and organism, and observed various physiological responses. In this study, we investigated the molecular response to heavy metal toxicity (Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) through expression of heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450 (CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP). HSPs showed up-regulation in Cu and Zn exposures. Furthermore, HSPs expression in treated groups tended to be higher than the control group. The tendency of CYP450 and GST mRNA expression was higher for Cr and Cu than for other exposure group. The expression of SP gene was low at Al exposure and other group were measured to be similar to control. These results suggest that heavy metal toxicity in freshwater ecosystem may affect physiological and molecular process. Also, the comprehensive gene expression in the aquatic midge Chironomus riparius give useful information to potential molecular biomarkers for assessing heavy metal toxicity.