• Title/Summary/Keyword: copper particle

Search Result 238, Processing Time 0.027 seconds

Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자)

  • Lim, Mee-Sook;Suh, Soong-Hyuck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing (난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성)

  • Kim J. H.;Yun J. H.;Lee G. G.;Choi I. D.;Park Y. H.;Cho K. M.;Park I. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.809-813
    • /
    • 2005
  • A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection (비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구)

  • Kang, B.S.;Lee, J.S.;Lee, T.S.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

A study of life predictions on very high temperture thermal stress (고온분위기에서 열응력을 받는 부재의 수명예측에 관한 연구)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.117-125
    • /
    • 1998
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. The volume free energy associated with Helmholtz free energy includes strain energies caused by applied stress and dislocations piled up in interface(DPI). The energy due to DPI is found by modifying the result of Dundurs and Mura[4]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(r) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius $r^*$ and incubation time $t^*$ to maximise Helmholtz free energy is found in present analysis. Also, kinetics of cavity formation are investigated using the results obtained by Riede [7]. The incubation time is defined in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that 1) strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius $r^*$ decreases or holds constant with increase of the time until the kinetic condition(eq. 2.3) is satisfied. there for the cavity may not grow right after it is formed, as postulated by Harris [15], and Ishida and Mclean [16], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f)and particle size on the incubation time are estimated using material constants of the copper as matrix.

  • PDF

Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings

  • Jun, Seongchul;Kim, Jinsub;Son, Donggun;Kim, Hwan Yeol;You, Seung M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.932-940
    • /
    • 2016
  • Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of $10{\mu}m$, $25{\mu}m$, and $67{\mu}m$ and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately $400kW/m^2k$ with APS $67{\mu}m$ and $296{\mu}m$ coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was $2.1MW/m^2$ at APS $67{\mu}m$ and $428{\mu}m$ coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes ($25{\mu}m$ and $67{\mu}m$) showed a similar level of enhancement.

Leaching Behavior of Gold from CPU chip Grinding Products in Iodide/Iodine Solution (Iodide/Iodine용액에서 CPU chip 분쇄물의 금 침출특성)

  • Jung, Insang;Joe, Aram;Choi, Joonchul;Song, Youjin;Park, Poongwon;Park, Kyungho;Lee, Sujeong;Park, Jaikoo
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.3-9
    • /
    • 2016
  • The leaching behavior of gold from waste CPU chip using Iodide/Iodine solution was studied. The direct leaching of gold with Iodide/Iodine solution for CPU chip under the size of 150 mesh showed leaching ratio of 20%. It was assumed that the copper film was produced on the gold particle during grinding process and the copper film prevents lodine/Iodide solution from contacting with leachable gold. Meanwhile, the extraction of gold was improved to 90% by pretreatment process with $HNO_3$ solution. In order to explain the result, EDS and ICP analysis for the leaching residue were conducted. It was found that the copper coated on the surface of the gold particle was removed about 80% by $HNO_3$, resulting in the increment of gold leaching rate.

Stabilization of As in Soil Contaminated with Chromated Copper Arsenate (CCA) Using Calcinated Oyster Shells (목재방부제(CCA) 오염토양의 소성가공 굴껍질을 이용한 비소 안정화)

  • Moon, Deok-Hyun;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Choi, Su-Bin;Moon, Ok-Ran;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.378-385
    • /
    • 2009
  • Arsenic (As) is known to be very toxic and carcinogenic to human beings. Arsenic contaminated soil was collected from a timber mill site at Busan Metropolitan City, Korea, where chromated copper arsenate (CCA) had been used to protect wood from rotting caused by insects and microbial agents. The soil was stabilized using both natural oyster shells (NOS) and calcinated oyster shells (POS). The calcination of natural oyster shells was accomplished at a high temperature in order to activate quicklime from calcite. Two different oyster shell particle sizes (-#10 mesh and -#20 mesh) and curing periods of up to 28 days were investigated. The stabilization effectiveness was evaluated based on the Korean Standard Test (KST) method (1N HCl extraction). The stabilization results showed that the POS treatment was more effective than the NOS treatment at immobilizing the As in the contaminated soils. A significant As reduction (96%) was attained upon a POS treatment at 20 wt% and passed the Korean warning standard of 20 mg/kg ('Na' area). However, an As reduction of only 47% (169 mg/kg) was achieved upon a NOS treatment at 20 wt%. The -#20 mesh oyster shells seem to perform better than the -#10 materials. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results showed that As immobilization was strongly associated with Ca and O in the presence of Al and Si.

Flow Boiling Heat Transfer Characteristics on Sintered Microporous Surfaces in a Mini-channel (마이크로 소결 구조 채널에서의 흐름 비등 열전달 특성 연구)

  • KIM, YEONGHWAN;SHIN, DONG HWAN;KIM, JIN SUB;MOON, YOOYONG;HEO, JAEHUN;LEE, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.105-110
    • /
    • 2018
  • The flow boiling heat transfer of water was experimentally investigated on plain and sintered microporous surfaces in a mini-channel. The effects of microporous coating on flow boiling heat transfer of subcooled water were investigated in a 300 mm long mini-channel with a cross section of $20{\times}10mm^2$. The test section has sufficiently long entrance length of 300 mm which provides a fully-developed flow before the channel inlet. The bottom side of the channel was heated by a copper block assembled with a high-density cartridge heater and other sides of the channel were insulated. The microporous surface was fabricated by sintering copper particles with the average particle size of $50{\mu}m$ on the top side of the copper block. Heat transfer measurement was conducted at the mass flux of $208kg/m^2s$ and the heat flux up to $500kW/m^2$. Microporous coated surface showed an earlier boiling incipience compared with plain surface regardless of the mass flux. Microporous coating were significantly attributed to local wall temperature and local heat transfer coefficient for flow boiling.

Synthesis and Characteristic of ${\epsilon}$-type Copper Phthalocyanine Used as Color Filter in LCD Panel (입실론 프탈로시아닌의 합성 및 특성에 대한 연구)

  • Kim, Jae Hwan;Kim, Song Hyuk;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.138-142
    • /
    • 2012
  • The ${\epsilon}$ type copper phthalocyanine (${\epsilon}$-CuPc), called as a pigment blue 15 : 6, is a significant material to produce a blue pixel in LCD (Liquid Crystal Display) panel. In this study, ${\epsilon}$-CuPc sample was synthesized at various reaction conditions by applying the seed method using ${\epsilon}$-CuPc nanoparticles as a seed. Adequate synthetic conditions of the samples were selected by analyzing and comparing crystalline structure, crystalline purity, microstructure, and synthetic yield of the samples with ${\alpha}$ and ${\beta}$ crystalline CuPc samples. The chemical and crystalline structure of the samples were tested using FT-IR spectrometer and X-ray diffractometry, respectively. The shape of the particle was examined using field emission scanning electiron microscope while the thermal property was tested utilizing thermogravimetric analysis.