• 제목/요약/키워드: copper oxides

검색결과 88건 처리시간 0.033초

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구 (A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea)

  • 박영석
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

폐전기전자기기(廢電氣電子機器) 스크랩으로부터 귀금속(貴金屬) 및 유가금속(有價金屬) 회수(回收)를 위한 건식공정(乾式工程) 기술(技術) 현황(現況) (Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap)

  • 김병수;이재천;정진기
    • 자원리싸이클링
    • /
    • 제18권4호
    • /
    • pp.14-23
    • /
    • 2009
  • 각종 전기전자제품의 제조과정 또는 사용 후 해체 과정에서 배출되는 폐전기전자기기(WEEE) 스크랩으로부터 금, 은, 팔라듐등 귀금속과 구리, 주석, 니켈등 유가금속의 회수는 금속 재활용측면뿐만 아니라 환경 유해물질 저감의 측면에서도 매우 중요하다. 일반적으로 WEEE 스크랩은 여러 종류의 금속과 합금뿐만 아니라 내화 산화물과 플라스틱 성분 등으로 구성된 복합물질이다. WEEE 스크랩에 함유된 귀금속과 유가금속은 가스휘발공정, 건식공정 또는 습식공정으로 회수될 수 있다. 그러나 가스휘발공정과 습식공정은 아직 기초연구단계에 머물고 있는 실정으로, 현재 WEEE 스크랩으로부터 금, 은, 팔라듐 및 구리 등을 회수하기위한 상업적인 플랜트의 대부분은 건식공정으로 이루어지고 있다. 따라서 본 논문에서는 WEEE 스크랩으로부터 귀금속 및 유가금속을 회수하는 건식공정에 대하여 소개하고, 폐동슬래그를 슬래그 형성제로 활용하여 WEEE 스크랩으로부터 귀금속 및 유가금속을 회수하기 위한 규모 확대 실험에 대한 결과를 제시한다.

몽골 촉트체치 지역 동 산출지 예비조사결과 (A Preliminary Survey Result of Cu Occurrence in Tsogttsetsii Area, Mongolia)

  • 김인준;이재호;류충렬;이범한;진광민;오트곤-에르덴 다바수;허철호;남형태
    • 자원환경지질
    • /
    • 제50권4호
    • /
    • pp.313-324
    • /
    • 2017
  • 촉트체치 지역은 남고비에 위치하며 석탄기 후기에서 페름기 초기에 관입한 흑운모 화강암 중 일부가 반암이 관입하면서 알카리 화강암화 된 부분과 관련된 동 광상이다. 말라카이트가 집중적으로 산출되는 지역은 녹니석, 녹렴석으로 변질된 프로필리틱 변질대가 광범위하게 나타난다. 격자지구화학탐사와 연장부 조사 결과 말라카이트가 산출되는 곳은 30개 지점으로 휴대용 XRF로 측정한 동함량은 1.080~18.300%로 나타났으며, 화학분석 결과 동함량은 13개 지점에서 각각 1.080%~32.900로 높게 나타났다. X-선 회전 분석결과와 현미경 관찰결과 동광물은 말라카이트가 주이며, 남동석, 퍼민제타이트, 황철석과 황동석 등이 가끔 산출되며, 그 외에 은 광물인 능홍은석이 산출된다. 또한 열수변질광물인 딕카이트가 산출되며, 변질산물인 방해석, 녹니석, 녹염석 등도 산출된다. 광화작용은 반암관입 후에 남은 잔류마그마에서 열수용액이 올라오면서 반암 주변 일부 화강암과 정단층 상반부에만 선택적으로 일어난 것으로 사료된다.

휴대폰 카메라 렌즈 스페이서 적용을 위한 구리의 흑화 (Cu Blackening through CuO Oxidation for the Application of Camera Lens Spacers in Mobile Phones)

  • 이예지;김용하;김창현;원용선
    • 청정기술
    • /
    • 제27권1호
    • /
    • pp.17-23
    • /
    • 2021
  • 휴대폰의 카메라 모듈 내에 정렬된 카메라 렌즈들은 일반적으로 검은색 폴리머 스페이서(spacer)에 의해서 물리적으로 분리된다. 그러나 카메라 모듈이 계속 얇아지고 삽입되는 렌즈의 수는 계속 증가하는 추세를 고려해볼 때, 렌즈들을 분리해주는 스페이서의 기계적 특성이 점점 중요해지고 있다. 이에 기존 폴리머 스페이서의 대체재로서 우수한 기계적 특성을 가진 구리(Cu) 소재가 고려되고 있는데, 특히 표면에 고유한 흑색 구리(II) 산화물(CuO)을 형성하여 빛의 간섭을 줄이고 플레어(flare) 현상을 억제할 수 있기 때문에 스페이서로 적합하다. 따라서 본 연구에서는 선행 연구들과 특허들을 분석 및 정리하여 표준 구리 흑화 공정과 공정 조건을 제시하였다. 전체 공정은 수세(cleaning), 탈산화(deoxidizing), 활성화(activation), 흑화(blackening), 그리고 안정화(sealing)의 단위 공정들로 구성되는데, 각 단위 공정의 온도 및 활성화 용액의 농도 등의 공정 변수가 구리 시료(strip)의 흑화도에 미치는 영향을 파악하였다. 표준 공정 조건은 색차계로 측정된 구리 시료의 흑화도가 품질 만족(on-spec.) 조건에 부합하는가를 기준으로 결정되었다.

Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합 (Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid)

  • 홍준성;이정훈;오유나;조광준;류도형;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구 (Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design)

  • 차한영;정찬엽
    • 한국결정성장학회지
    • /
    • 제30권5호
    • /
    • pp.208-213
    • /
    • 2020
  • 본 연구에서는 유한요소 해석과 PQRSM 알고리즘 기반의 최적설계 기법을 활용하여 IGZO 산화물 타겟과 구리백플레이트가 서로 접합되어 있는 타겟 모듈에서 IGZO 산화물의 열변형을 최소화할 수 있는 방법에 대해 고찰했다. 3차원 유한요소 해석 결과 고온에서 IGZO와 구리 백플레이트의 접합 이후 냉각될 때 IGZO 산화물의 열변형은 최대 0.161 mm로 예측되었다. 유한요소 해석을 연동한 최적설계기법을 적용하기 위해 타겟 모듈을 냉각할 때 사용하는 하부받침대와 상부고정대의 위치를 설계변수화하여 목적함수인 IGZO의 열변형이 최소화되도록 최적설계를 수행했고, 그 결과 IGZO 산화물의 열변형을 최대 42 % 감소시킬 수 있었다. 이는 타겟을 구성하는 주재료와 구조 변경 없이 공정 중에 사용되는 부재료의 위치 변경만으로도 산화물의 열변형을 감소시킬 수 있어 산업계에 유용할 것으로 사료된다.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발 (Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide)

  • 정미원;임샛별;문보람;홍태환
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.