• Title/Summary/Keyword: copper ion

Search Result 504, Processing Time 0.029 seconds

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

Characteristics and management of citrus orchard soils in Jeju (제주도(濟州道) 감귤원토양(柑橘園土壤)의 특성(特性)과 관리(管理))

  • Park, Hoon;Yoo, Sun-Ho;Hong, Soon Beum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.135-152
    • /
    • 1975
  • The following informations are known from physical and chemical characteristics of orchard soils and nutritional diagnosis of orange leaves in Jeju. 1. Most orange orchards are located on terrace and cindercone thus soil moisture and microclimate of an orchard will greatly be affected by its topography. 2. Excessive well drainage, shallow soil depth, high content of gravels, low solid phase ratio and strong wind will give severe problem of soil moisture and wind errosion, thus the exte- nsion of soil depth is necessary for maintain nutrients, water and sufficient root volume. 3. Available soil water was significantly and positively correlated with organic matter content and clay content also contributes to available soil water. Vinyl mulching was greatly helpful for soil water conservation, wind errosion prevention, soil temperature increases during winter. 4. Abundant amphoteric amorphous allophane take a key role to fix phosphorus and also rations and thus it is the major factor to determine fertilizer efficiency. Lime and phosphorus must be applied in deeper soil layer. Release of filed phosphorus must be reevluated for availability. 5. Organic matter such as see weeds will greatly increase fertilizer efficiency and low fertilizer efficiency during spring may be related to available soil water. 6. Nitrogen was in superoptimum and Mg was enough but P and Ca were somewhat deficient according to leaf analysies while K was deficient according to fruit analysis. Phosphorus application increased sugar/acid ratio and potassium decreases rind percentage. 7. Manganese deficiency and toxicity appeared in a few places. Iron and boron were enough. Most places showed tendency of copper excess but some places showed copper deficiency. 8. Soiling after elimination of rock base, application of slow release fertilizer and abundant organic matter, vinyl mulching and drip irrigation will increase fertilizer efficiency greatly and fruit yield drastically.

  • PDF

DISTRIBUTION OF SOME CHEMICAL POLLUTANTS IN SUYEONG BAY (수영만 인근해수의 오탁분포에 대하여)

  • WON Jong-Hun;LEE Bae-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 1979
  • In order to study the water pollution in Suyeong Bay, Busan, some chemical constituents were determined at 25 stations in the neap tides on 9 Aug. 1977 and spring tides on 30 Aug. 1977. Range and mean values of the constituents in the spring tides are as follows: $pH\;6.54\~8.06,\;7.54;$ electrical conductivity $0.413\~0.481\times10^5\;\mu\mho/cm,\;0.467\times10^5\;\mu\mho/cm;\;transparency\;0.2\~5.5m,\;2.2m;$ turbidity $1\~60ppm$, 14ppm, chlorosity $15.20\~18.11g/\ell,\;17.67g/\ell;$ fluoride ion $0.94\~1.03ppm$, 0.99ppm; dissolved oxygen $0.17\~7.60ppm$, 4.77ppm; sulfide $0\~0.46ppm$, 0.07ppm; chemical oxygen demand $1.20\~40.74ppm$, 6.11ppm; ammonia-nitrogen $0.060\~0.520ppm$, 0.180ppm; nitrite-nitrogen $0.001\~0.026ppm$, 0.009ppm; nitrate-nitrogen $0\~0.037ppm$, 0.014ppm; phosphate-phosphorus $0.002\~0.261ppm$, 0.050ppm; n-Hexane soluble $0.5\~5.4ppm$, 2.1ppm ; iron $1.0\~104.11\;ppb$, 24.15ppb ; copper $0\~27.45ppb$, 4.19ppb; lead $0\~2.50ppb$, 0.92ppb; zinc $0\~5.15ppb$, 1.47ppb ; cadmium $0\~0.26ppb$, 0.04ppb; and mercury $0.05\~0.37ppb$, 0.11ppb respectively. The variations of the contents of the chemical constituents in the spring tides were larger than in the neap tides. The contents of COD, sulfide, nutrient salts and heavy metals were the highest in the estuary of Suyeong River, and decreased in order of off Kwangan-Ri region, outer Bay and off Haeun-Dae region. The water quality in Suyeong Bay was particularly shown that the concentrations of COO, iron, copper and mercury were higher than those of other coastal aseas and deficiency in dissolved oxygen was observed in some parte of Suyeong Bay. In consideration of the relationship between the chlorosity and the concentrations of nutrient salts, COD and total heavy metals, water pollution of this area is considered due to the inflow of Suyeong River which was extremely polluted by sewage and industrial wastewaters.

  • PDF

A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION (아말감의 구강내 부식 및 인공 부식에 관한 연구)

  • Lim, Byong-Mok;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst (설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응)

  • Kang, Hyo Yoon;Hwang, Dong Won;Hwang, Young Kyu;Hwang, Jin-Soo;Chang, Jong-San
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • A sulfonated activated carbon (AC-$SO_3H$) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-$SO_3H$ at 423.15 K. Although AC-$SO_3H$ possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-$SO_3H$, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-$SO_3H$, the turnover number of AC-$SO_3H$ was 4 times higher than the conventional two-step process using sulfuric acid.

Characterization of Heavy Metal-enriched Particles from Contaminated Soils in a Military Shooting Range (군사격장 오염토양 내 고농도 중금속함유 입자의 기초특성연구)

  • Kim, Jeeeun;Kim, Jeongjin;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.25-31
    • /
    • 2013
  • Civil and military firing ranges are usually contaminated with heavy metals such as lead and copper and remediation is required. Acid washing and extraction are common remediation methods. Lead contaminated firing range soil samples were collected and a preliminary study was conducted to evaluate the characteristics of the contamination and the contribution of high specific gravity particles. Ethylenediamine tetra acetic acid(EDTA) extraction was applied for the removal of heavy metal but the extraction was not feasible for the firing range soil. Even after the repeated EDTA extraction, the contamination were still over the Korean environmental standard indicating that soil particles highly contaminated with heavy metal which release the heavy metal ion even after the repeated extraction. Some colored and higher specific gravity particles were separated from the soil samples and analyzed. The colored particles have specific gravity of 2.5-6.6. The saturation ratio of Pb and EDTA was 4.9-32%. After removal of these colored particles, the sandy soil showed moderate contamination which can be treated with soil washing. This was proved with the five-level sequential extraction and TCLP tests.

Effects of Korean Wheat on LDL Oxidation and Atherosclerosis in Cholesterol-Fed Rabbits (고콜레스테롤혈증 유발 가토를 이용한 우리밀의 LDL산화 및 동맥경화 예방 효과)

  • Choe, Myeon;Kim, Hyun-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.104-108
    • /
    • 2002
  • Numerous studies have suggested the involvement of oxidative processes in the pathogenesis of atherosclerosis and especially of oxidized low density lipoproteins (LDL). We studied the effect of Korean wheat on the oxidizability of LDL and the development of experimental atherosclerosis in rabbits on cholesterol diet. For the approach of the aim, antioxidative activity of wheat extracts against oxidation of LDL was investigated. The antiatherogenic effect of wheat was studied against Newzealand whithe (NZW) rabbits fed containing the wheat powder for 12 weeks. PBS extracts of Korean and imported wheats decreased LDL oxidation induced by copper ion by 62.3%, 52.6% respectively in comparison with control. Liver thiobarbituric acid reactive substance (TBARS ) levels of rabbits were significantly lowered in Korean wheat fed group (0.397$\pm$ 0.029 nmol MDA/mg protein, p<0.05) compared to control (0.496$\pm$0.021 nmol MDA/mg protein) and imported wheat group (0.478$\pm$0.019 nmol MDA/mg protein). TBARS levels of kidney showed no significant difference among treatment groups. The aorta of cholesterol-fed rabbits showed typical atherosclerotic lesions when compared with the controls, but the microscopic differences between groups was not clear. The present study suggests that Korean wheat may have higher antioxidative capacity than imported wheat and have more beneficial effects for the treatment of disease by inhibiting the oxidation of LDL.

Extraction of Minerals and Elimination Effect of Heavy Metals in Water by Korean Quartz Porphyry (한국산 맥반석의 미네랄 용출 및 중금속제거 효과)

  • Hwang, Jinbong;Yang, Miok;Kim, Mina;Park, Sunghoon
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.310-319
    • /
    • 1996
  • According to the element analysis of Korean Quartz Porphyry, the ignition loss related to porosity was 7.03, 3.36, 2.09 and 0.73% in the order of Suanbo, Yeachen, Angang and Kyongsan. Extraction of minerals in deionized water and elimination effect of heavy metals in water by Quartz Porphyry were examined. When the Quartz Porphyry of the Suanbo, Yeachen of 0.5~2.0% concentration and the Quartz Porphyry of the Angang of 1.5% concentration were immersed and stirred in deionized water for 3 hours at 180rpm, various minerals concentration of the all stirred water were suitable for potable water. But Quartz Porphyry of the Yeachen was not suitable for potable water because of excess extraction of iron. The elimination rate of lead in single solution was 99% by Quartz Porphyry of the Suanbo, Yeachen and Angang of 3% concentration, Cadmium by Quartz Porphyry of the Suanbo of 7% concentration was eliminated about 98% in 1 hour. The copper was significantly eliminated in Quartz Porphyry of low concentration. Especially in Quartz Porphyry of Angang at 0.4% concentration, the rate of ion exchange was 99% in 4 hours. But elimination effect of arsenic in water by Korean Quartz Porphyry was very low.

  • PDF

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF