• Title/Summary/Keyword: copper contamination

Search Result 132, Processing Time 0.028 seconds

A Study on the harmful trace elements in food (야채중에 함유된 유해 미량금속에 관한 연구)

  • 문인순;고영수;홍순영
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 1986
  • In order to investigate the harmful trace elements in Korean common vegetable, the contents of Lead, Cadmium, Copper, Zinc and Manganese are studied in this paper. As shown in the Table 1, the following vegetable samples collected from the agriculture-marine products market I Seoul were used; root vegetables-potato, sweet potato, carrot, radish, onion and garlic, fruit vegetables-cucumber, pumpkin, green pepper, egg plant, tomato and melon. The contents of the harmful trace elements were determinded by means of atomic absorption spectrophotometry. These elements were extracted from the vegetables with the DDTC-MIBK extraction method. The results were as follows; 1. The average contents of the harmful trace elements in the vegetables were as follows; Root vegetables-Lead, 0.387 ppm; Cadmium, 0.030 ppm; Copper, 1.267 ppm; Zinc, 7.395 ppm; Manganese, 5.380 ppm. Fruit vegetables-Lead, 0.259 ppm; Cadmium, 0.028 ppm; Copper, 1.155 ppm; Zinc, 3.732 ppm; Manganese, 3.532 ppm. 2. The contents of harmful trace elements in vegetables were significantly low compared with foreign standards. This means that vegetables contamination with those harmful trace elements is not significant at present.

  • PDF

Copper and Lead Concentrations in Water, Sediments, and Tissues of Asian Clams (Corbicula sp.) in Bung Boraphet Reservoir in Northern Thailand (2008)

  • Netpae, Tinnapan;Phalaraksh, Chitchol
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Bung Boraphet is the largest freshwater reservoir in Thailand. This study examined the accumulation of copper (Cu) and lead (Pb) in water, sediment and tissues of Asian clams (Corbicula sp.) within Bung Boraphet to assess the possible polluting effect of soil erosion and the dissolution of water soluble salts from the Nan River. Samples were collected from 12 study sites within Bung Boraphet between February and December 2008. The physicochemical parameters of the water including temperature, pH, turbidity, ammonia nitrogen, nitrate nitrogen, orthophosphates, biochemical oxygen demand, dissolved oxygen, Cu, and Pb were measured. The water in Bung Boraphet was found to be medium clean according to the surface water quality standard of Thailand. The levels of Cu and Pb in the water were low but heavy metals were detected at higher levels in the sediment and tissues of Corbicula sp. In the near future, management practices and regulator approaches for Cu and Pb contamination will be needed to protect the water in Bung Boraphet.

Study on the Relationship between Concentration of JGB and Current Density in TSV Copper filling (TSV 구리 필링 공정에서 JGB의 농도와 전류밀도의 상관 관계에 관한 연구)

  • Jang, Se-Hyun;Choi, Kwang-Seong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.99-104
    • /
    • 2015
  • The requirement for success of via filling is its ability to fill via holes completely without producing voids or seams. Defect free via filling was obtained by optimizing plating conditions such as current mode, current density and additives. However, byproducts stemming from the breakdown of these organic additives reduce the lifetime of the devices and plating solutions. In this study, the relationship between JGB and current density on the copper via filling was investigated without the addition of other additives to minimize the contamination of copper via. AR 4 with $15{\mu}m$ diameter via were used for this study. The pulse current was used for the electroplating of copper and the current densities were varied from 10 to $20mA/cm^2$ and the concentrations of JGB were varied from 0 to 25 ppm. The map for the JGB concentration and current density was developed. And the optimum conditions for the AR 4 via filling with $15{\mu}m$ diameter were obtained.

Distribution of Heavy Metals in Sediments, Seawater and Oysters (Crassostrea gigas) in the Jinhae Bay (진해만의 퇴적물, 해수 및 참굴 내의 중금속 분포)

  • 이인숙;김은정
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2000
  • Heavy metal concentrations in surface sediments, seawater and oysters (Crassostrea gigas) were determined to assess heavy metal contamination in the Jinhae Bay. The ranges of cadmium, cobalt, copper, nickel, lead and zinc concentration in surface sediments were 0.1∼2.4, 12.6∼14.4, 25.3∼ 92.3, 32.4∼ 93.5, 24. 1∼81.2, 124∼477 ㎍/g, respectively. The concentrations of cadmium, copper, lead and zinc which were influenced by industrial activity were the highest in the inside of Masan Bay. Dissolved concentrations of cadmium, cobalt, copper, nickel, lead and zinc in seawater were <0.010∼0.043, 0.008∼0.120, 0.31∼0.90, 0.25∼3.10, 0.010∼0.142, 0.27∼9.04 ㎍/L, respectively. The concentrations of cadmium, cobalt, copper, nickel, lead and zinc in seawater were also the highest inside of Masan Bay, suggesting that Masan Bay is the major source of heavy metal input to the Jinhae Bay. Bioconcentration factors (BCF) of zinc, copper, cadmium, lead, cobalt and nickel in C. gigas were 647373, 280861, 145069, 44559, 13524, 2745, respectively, showing C gigas is a stronger accumulator than other bivalves.

  • PDF

Using GIS Modeling to Assess the Distribution and Spatial Probability of Soil Contamination of Geologic Origin in Korea (GIS 모델링을 이용한 국내 지질 기원 토양오염의 분포 현황과 공간적 개연성 연구)

  • Jae-Jin Choi;Kyeong-Hun Cha;Gyo-Cheol Jeong;Jong-Tae Kim;Seong-Cheol Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.39-49
    • /
    • 2023
  • Soil contaminants measured and managed in Korea include those of geologic origin such as arsenic, cadmium, copper, lead, zinc, nickel, mercury, and fluoride. This study identifies the distribution of these contaminants using GIS modeling to analyze the spatial probability of soil contamination originating from geology. The modeling found that cadmium, copper, lead, nickel, and mercury often exceed the regulated standard by <1%. Concentrations of arsenic and zinc greatly exceeded the standard in the vicinity of mines and industrial complexes: mining and industry seemed to have substantial effects on the concentrations of these metals. Although fluoride was sampled at the lowest number of points, its frequency of exceeding the standard was the highest. No obvious source of artificial contamination has been identified, and fluoride's distribution characteristics showed continuity over a wide area, suggesting a strong correlation between geological characteristics and fluoride concentration. The highest frequencies of fluoride exceeding the standard were in Jurassic granite (40.00%) and Precambrian banded gneiss (34.12%). As these rocks contributed to the formation of soil through their weathering, high fluoride concentrations can be expected in soil in areas where these rocks are distributed.

Heavy Metal Contamination in Surface Water Used for Irrigation: Functional Assessment of the Turag River in Bangladesh

  • Arefin, M. Taufique;Rahman, M. Mokhlesur;Wahid-U-Zzaman, M.;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.83-90
    • /
    • 2016
  • The aim of the present study was to evaluate the degree of metal contamination of the Turag River water and its suitability for irrigation. Twenty water samples were analyzed for physicochemical parameters and metals viz., calcium, magnesium, potassium (K), sodium, copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni). All water samples were slightly alkaline to alkaline. Regarding electrical conductivity (EC), all samples were suitable for crop in soils with moderate permeability and leaching. Water samples were medium salinity and low alkalinity hazard classes. In terms of total dissolved solids (TDS), all samples were classified as freshwater. As per sodium adsorption ratio (SAR) and soluble sodium percentage (SSP), all samples were classified as excellent. No residual sodium carbonate (RSC) was detected in any of the samples, indicating suitability for irrigation; and all samples were considered very hard. Cr and Mn contents in all samples were above FAO guideline values and, therefore, these metals were considered toxic. Zn, Cu, Pb, Cd, and Ni concentrations were below acceptable limit for irrigation and do not pose a threat to soil environment. Significant relationships were found between EC and TDS, SAR and SSP, SAR and RSC, and SSP and RSC. The combinations of ions such as K-Zn, K-Fe, K-Cu, K-Mn, K-Pb, Zn-Fe, Zn-Cu, Zn-Mn, Fe-Mn, Cu-Mn, Cu-Pb and Mn-Pb exhibited significant correlation. This study revealed that Turag River water samples are contaminated with Cr and Mn. This fact should not be ignored because water contamination by metals may pose a threat to human health through food chain.

A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines (국내폐탄광의 산성폐수 오염도 평가에 관한 연구)

  • 최우진
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 1997
  • Temporal and spatial comparisons of acid mine drainage contaminated waters are difficult because of the complex physico-chemical nature of the pollutant. In the present study, an acid mine drainage index has been developed and evaluated for the assessment of surface waters. AMD index is calculated using a modified arithmetic weighted index using seven parameters which are most indicative of AMD contamination, i. e. pH value, sulphate, iron, zinc, aluminum, copper and manganese. Weighting is used to express the relative indicator value of each parameter. The proposed AMD index is used to quantify contamination from acid mine drainage over ten different old mine sites and assess the degree of impact on surface on surface waters. As a result of AMD evaluation, the Sukbong Mine located near the Moonkyung province showed lowest AMD value indicating the worst acid mine drainage quality. In overall, Youngdong mine sites showed higher contaimination compared to the other mine sites including Youngsuh, Choongbu, Suhbu and Nambu area.

  • PDF

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

Effects of Heavy Metals on Amphibian Embryos, Tadpoles, and Adults (중금속이 양서류 배아, 유생 및 성체에 미치는 영향에 관한 소고)

  • Park, Chan Jin;Ahn, Hyo Min;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.287-306
    • /
    • 2012
  • Amphibian population declines globally. Environmental contamination by heavy metals has been suspected to the one of the reason for distinction of amphibian which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guidelines. Here, we reviewed toxicological information about toxicity of heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) on various end-point of amphibian.