Nam Wonwoo;Baek Seung Joong;Kazuko I. Liao;Joan Selverstone Valentine
Bulletin of the Korean Chemical Society
/
제15권12호
/
pp.1112-1118
/
1994
Epoxidation of olefins has been studied using iodosylbenzene (PhIO) as the terminal oxidant and binuclear and mononuclear complexes of $Mn^{2+}$, $Co^{2+}$, and $Cu^{2+}$ as catalysts. Epoxides were the predominant products with trace amounts of allylic oxidation products, and the metal complexes were found to be effective catalysts in the epoxidation reactions. The reactivity of binuclear copper complexes was greater than that of the mononuclear copper complexes, whereas the binuclear and mononuclear complexes of $Mn^{2+}$ and $Co^{2+}$ showed similar reactivities. The nature of the ligands bound to copper did not influence the reactivity of the binuclear copper complexes so long as copper ions were held in close proximity. A metal-iodosylbenzene complex, such as suggested previously for Lewis acidic metal complex-catalyzed epoxidation by iodosylbenzene, is proposed as the active epoxidizing species. Some mechanistic aspects are discussed as well.
공침법으로 제조한 vanadium molybdate와 copper molybdat촉매의 기계적 혼합물과 $V_2O_5$와 $MoO_3$의 기계적 혼합물을 아크로레인의 선택 산화반응용 촉매로 사용하여 각각의 금속산화물 사이의 상승효과에 대하여 고찰하였다. 반응실험 결과 혼합촉매를 사용한 경우 아크로레인의 전화율과 아크릴산의 수율이 증가하였으며 이는 remote control mechanism으로 설명할 수 있었다. 열중량 분석결과 혼합촉매에서 격자산소가 방출됨을 확인할 수 있었다.
페로센 카르복시알데히드와 1,2-diaminocyclohexane을 2:1로 반응시켜 키랄 리간드 L(L=N,N'-cyclohexane bis(ferrocenylmethylene)amine)을 합성하고 이를 구리와 반응시켜 새로운 구리 착물을 합성하였다. 이 착물들을 확인하고 비대칭 유기 합성반응에 촉매로 사용하였다. 구리(II) 착물들은 스티렌과 에틸디아조아세테이트와의 시클로프로판화 반응에서 촉매작용을 하지 않았으나 구리(I)화합물, Cu(I)LOTf (OTf=trifluoromethanesulfonate)는 시클로프로판 생성물 trans:cis의 비율에 있어 80:20 이상의 높은 regioselectivity를 보였다.
To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)
Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.
Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.
Cu와 Zn의 몰비가 1/2, 1/1, 2/1인 촉매를 제조하여 메탄올 수증기 개질반응의 활성을 측정하고, 가장 좋은 활성을 보이는 Cu/Zn의 몰비가 2/1인 촉매를 선정하여 $TiO_2$의 첨가량을 달리하여, 메탄올 수증기 개질반응에 대한 활성을 측정하였다. 반응의 압력은 상압, 온도는 $250^{\circ}C$, 수증기/메탄올 몰비 1.5, 접촉시간 0.1 g-cat.hr/mL-feed의 조건에서 활성을 비교한 결과, $TiO_2$의 첨가량이 3 mol%인 촉매의 경우 최대 전화율을 보였고, 전범위에서 수소로의 선택도는 매우 높았다. 촉매의 특성 분석결과 촉매의 비표면적보다는 $N_2O$흡착, 분해방법에 의한 금속구리의 비표면적의 영향이 더욱 큼을 알 수 있었고, 적정 $TiO_2$의 첨가로 금속구리의 비표면적을 높일 수 있었다. XRD, XPS분석결과 반응중에 아연의 산화상태는 달라지지 않으나, 구리는 대부분이 0가와 1가의 상태로 존재함을 확인하였다.
여러가지 조성비로 만든 Cu/ZnO계 촉매로 이산화탄소를 수소화시켜 메탄올을 합성하였다. 촉매제조시 각 성분의 조성비가 촉매활성에 미치는 영향을 조사하고 반응촉매에 대하여 표면적 측정(BET), 주사전자현미경 측정(SEM), X선회절분석(XRD), X선광전자분석(XPS) 등을 실시하여, 각 촉매의 촉매특성을 조사하고 촉매활성과의 연관성을 연구하였다. 반응생성물은 메탄올과 일산화탄소 뿐이었는데 메탄올의 생성은 CuO의 함량이 증가하면 그에 따라 점차 증가하였으나 CuO:ZnO의 조성비율이 30:70일 경우에 최대이었고, CuO가 70 이상이면 급격하게 감소하였다. 촉매에 대한 SEM 측정과 BET 측정결과에서 확인된 바와 같이 이점은 미세결정크기가 증가되고 표면적이 감소하는 점과 일치되었다. 또 XPS 측정결과에서 촉매표면상에서의 Cu의 농도는 Cu/Cu+Zn(atomic ratio)을 비교할 때 CuO의 함량이 50% 이상인 경우에서 현저히 감소하였다. 그리고 각 촉매들의 $Cu(2P^3)$에 대한 결합에너지의 수치상의 값은 거의 같았으나 환원된 상태의 $Cu(2P^3)$의 결합에너지는 소성된 상태의 것과 비교하여 낮아졌고, 표면에 분포된 Cu 는 대부분 $Cu^{\circ}$로 확인되었으며 CuO:ZnO의 조성이 30:70인 경우에서 최대가 되었다. 이것은 또한 CuO의 조성비율이 30인 때에 메탄올생성이 최대라는 실험결과와도 잘 일치하였다. 그리고 환원된 각각의 촉매로 펄스(pulse)형태의 반응기에서 이소프로판올을 분해시킨 결과 아세톤의 생성율이 프로필렌보다 컸음으로 이들은 염기성이 상대적으로 강한 촉매라고 추측하였다.
차세대 고밀도 연료인 tricyclopentadiene (TCPD)는 dicyclopentadiene (DCPD)를 Diels-Alder 소중합 반응을 통하여 제조하여 왔다. 이에 본 연구에서는 다양한 음이온 전구체와 양이온 전구체의 조합으로 만들어진 이온성 액체 촉매를 이용한 tricyclopentadiene (TCPD) 합성에 관한 연구를 수행하였다. 본 연구에 사용된 2가지 음이온 전구체는 copper(I) chloride (CuCl), iron(III) chloride ($FeCl_3$)이며 양이온 전구체는 triethylamine hydrochloride (TEAC), 1-butyl-3-methylimidazolium chloride (BMIC)이다. 이온성 액체 촉매의 소중합을 통한 TCPD의 제조는 기존 Diels-Alder 반응보다 DCPD의 전환율과 TCPD의 수율 측면에서 우수하였다. 또한, 음이온/양이온 전구체의 조합으로 제조된 이온성 액체 촉매의 산도와 TCPD 수율과의 상관관계가 있었다. 이온성 액체 촉매의 루이스 산도가 낮은 음이온 전구체로 CuCl를 이용하였을 때가 $FeCl_3$를 사용하였을 때보다 TCPD 수율이 좋았다. $FeCl_3$를 음이온 전구체로 하고 양이온 전구체로 BMIC를 사용하여 두 전구체의 몰 비를 조절하여 루이스 산도를 낮추면 TCPD 수율을 증가시킬 수 있었다.
액체 암모니아와 p-diiodobenzene (PDIB)을 반응물로, Cu계 화합물을 촉매로 사용하는Aromatic amination을 이용하여 p-phenylenediamine (PPD)을 합성하였다. 촉매의 종류와 양, 환원제의 종류, 암모니아의 양, 반응 온도가 생성물의 분포에 미치는 영향을 조사하였다. Cu(I) 화합물과 Cu 분말은 촉매로서 작용한 반면 Cu(II) 화합물은 촉매로서 작용하지 않았다. 촉매의 양이 증가할수록 반응속도는 빨라지지만 부반응물인 aniline의 생성량도 증가하였다. Aniline 생성량은 또한 사용한 암모니아의 양이 증가할수록 감소하였다. 촉매 사용량을 줄이기 위해 환원제인 ascorbic acid, hydrazine, dihydroxyfumaric acid를 조촉매로 사용하면 반응속도가 크게 향상되었으나 부반응물인 aniline의 생성량 또한 증가하였다. 사용한 조촉매 중에서는 ascorbic acid와 dihydroxyfumaric acid를 사용하였을 경우가 hydrazine을 사용하였을 경우보다 반응속도가 빨랐고, dihydroxyfumaric acid를 사용하였을 경우 가장 적은 양의 aniline이 생성되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.