• Title/Summary/Keyword: copper(I) catalysts

Search Result 16, Processing Time 0.028 seconds

Epoxidation of Olefins by Iodosylbenzene Catalyzed by Non-Porphyrin Metal Complexes

  • Nam Wonwoo;Baek Seung Joong;Kazuko I. Liao;Joan Selverstone Valentine
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1112-1118
    • /
    • 1994
  • Epoxidation of olefins has been studied using iodosylbenzene (PhIO) as the terminal oxidant and binuclear and mononuclear complexes of $Mn^{2+}$, $Co^{2+}$, and $Cu^{2+}$ as catalysts. Epoxides were the predominant products with trace amounts of allylic oxidation products, and the metal complexes were found to be effective catalysts in the epoxidation reactions. The reactivity of binuclear copper complexes was greater than that of the mononuclear copper complexes, whereas the binuclear and mononuclear complexes of $Mn^{2+}$ and $Co^{2+}$ showed similar reactivities. The nature of the ligands bound to copper did not influence the reactivity of the binuclear copper complexes so long as copper ions were held in close proximity. A metal-iodosylbenzene complex, such as suggested previously for Lewis acidic metal complex-catalyzed epoxidation by iodosylbenzene, is proposed as the active epoxidizing species. Some mechanistic aspects are discussed as well.

Synergistic Effects of Mo-V Based Mixed Oxide Catalysts for Acrolein Oxidation(I) (아크로레인 산화용 Mo-V 계 혼합산화물 촉매의 상승효과(I))

  • Na, Suk-Eun;Kim, Kyung-Hoon;Chung, Jong-Shik;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.717-721
    • /
    • 1992
  • Mechanical mixtures of vanadium molybdate and copper molybdate catalysts prepared by coprecipitation method, and those of $MoO_3$ and $V_2O_5$ were used to study the synergistic effects between each metal oxide for the selective oxidation of acrolein. The catalytic activity results revealed that the conversion of acrolein and yield of acrylic acid were increased with the mixture catalysts and it could be explained by a remote control mechanism. Thermal gravimetric analysis confirmed the evolution of lattice oxygen in the mixture catalysts.

  • PDF

Development of Ferrocene-Containing Metal Catalysts for Asymmetric Synthesis (페로센을 이용한 비대칭 유기합성용 금속 촉매의 개발)

  • Oh, Yunghee;Choi, Mi-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.804-807
    • /
    • 1999
  • New copper complexes with a ligand, L(L=N,N'-cyclohexane bis(ferrocenylmethylene)amine) which was obtained from ferrocene carboxaldehyde and 1,2-diaminocyclohexane with a mole ratio of 2:1, were prepared and characterized. Those were adapted to asymmetric catalysis. The copper(II) complexes do not work in cyclopropanation of styrene and ethyl diazoacetate but copper(I) complex catalyzes. The Cu(I)LOTf (OTf=trifluorometanesulfonate) shows a good regioselectivity giving high trans to cis ratio of up to 80:20.

  • PDF

The Treatment of Flue SO$_2$ Gas by Cu Powder (I) (구리 분말을 이용한 $SO_2$ 배기가스의 처리(I))

  • 정국삼;김학성;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Studies on Activity and Characteristics of CuO/ZnO/TiO2 Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응을 위한 CuO/ZnO/TiO2계 촉매의 활성 및 특성에 관한 연구)

  • Koh, Hyoung-Lim;Kim, Tae-Won;Lee, Jihn-Koo;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.956-960
    • /
    • 1998
  • Cu-Zn and Cu-Zn-Ti catalysts for the steam reforming of methanol were prepared. This reaction was carried out at atmospheric pressure, $250^{\circ}C$, steam/methanol molar ratio 1.5, and contact time 0.1 g-cat.hr/mL-feed. In case of the catalyst with 3 mol% of $TiO_2$, the activity was superior to that of catalysts without $TiO_2$. The reaction products were mainly hydrogen and carbon dioxide. It was found that catalytic activity was not related to specific surface area but affected by metallic copper area which was measured by $N_2O$ decomposition and increased with the addition of $TiO_2$ content. XPS and XRD showed that the oxidation state of zinc was not changed during reaction, but oxidation states of copper existed in Cu(0) or Cu(I).

  • PDF

Synthesis of Methanol from Carbon Dioxide (I). Study on Cu / ZnO Catalyst System (이산화탄소에 의한 메탄올 합성 (제 1 보). Cu / ZnO 촉매계 연구)

  • Sung Yun Cho;Ki Won Jun;Dae Chul Park;Kyu Wan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.558-567
    • /
    • 1989
  • The synthesis of methanol from carbon dioxide and hydrogen was studied for various compositions of Cu/ZnO catalyst system. Effect of the composition ratio of CuO and ZnO on the catalytic activity in the above reaction and the relationship between the activity and the characteristics of the catalysts were explained from the result of surface area measurements, SEM, XRD, and XPS. The major products of the reaction were methanol and carbon monoxide. The selectivity to methanol increased with increase of the copper oxide content in the catalyst up to CuO: ZnO = 30:70 weight ratio, and decreased rapidly when the content is above 70%. SEM and BET measurements, indicate that this point corresponds to the increasing point of the catalyst crystallite size and the decreasing point of the surface area. As to the Cu/Cu + Zn atomic ratio, the surface concentration of copper measured by XPS decreased remarkably when the copper oxide content in catalyst was higher than 50%. All the unreduced catalysts had almost same binding energy of Cu(2P3) level, but the binding energy for $Cu(2P^3)$ level of reduced catalysts was lowered than that of calcined catalysts. The surface copper species which was in the maximum amount when the CuO:ZnO composition in the catalyst was 30:70, existed as zero valent copper. This result agreed with the experimental result that the highest rate of methanol formation was observed when the CuO content in the catalyst was 30%. It was postulated that these reduced catalysts performed with a relatively strong basicity because the formation rate of acetone was higher than that of propylene in isopropanol decomposition as measured in a pulse type reactor.

  • PDF

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts (이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구)

  • Kim, Su-Jung;Han, Jeongsik;Jeon, Jong-Ki;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.593-597
    • /
    • 2015
  • Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

A Study on the Synthesis of p-phenylenediamine (PPD) Using Copper Catalyst (Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구)

  • Kim, Jungsuk;Lee, Sang-yong;Lee, Jungho;Choi, Won Choon;Kang, Na Young;Park, Sunyoung;Kim, Kiwoong;Lim, Jong Sung;Park, Yong-Ki;Seo, Hwimin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.425-430
    • /
    • 2016
  • p-Phenylenediamine (PPD) was synthesized by aromatic amination of p-diiodobenzene (PDIB) using liquid ammonia and Cu-catalysts. The effects of the catalyst, reductant, ammonia quantity and reaction temperature on PPD production were investigated. Cu(I) compounds and Cu powder were selected as catalyst due to a higher selectivity than Cu(II) compounds. As the catalyst quantity increased, rate of PPD production as well as side reaction of aniline decreased with increasing the quantity of ammonia. Reductants such as ascorbic acid, hydrazine and dihydroxyfumaric acid were tested to lower the catalyst loading. The use of reductants resulted in increasing the reaction rate but also increased the amount of aniline The rate of reaction using ascorbic acid or dihydroxyfumaric acid was faster than that using hydrazine. The lowest side reaction of aniline was found in dihydroxyfumaric acid of reductants investigated.