• Title/Summary/Keyword: coplanar calibration

Search Result 6, Processing Time 0.021 seconds

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

Precise Detection of Coplanar Checkerboard Corner Points for Stereo Camera Calibration Using a Single Frame (스테레오 카메라 캘리브레이션을 위한 동일평면 체커보드 코너점 정밀검출)

  • Park, Jeong-Min;Lee, Jong-In;Cho, Joon-Bum;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.602-608
    • /
    • 2015
  • This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.

Camera Calibration for Machine Vision Based Autonomous Vehicles (머신비젼 기반의 자율주행 차량을 위한 카메라 교정)

  • Lee, Mun-Gyu;An, Taek-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.803-811
    • /
    • 2002
  • Machine vision systems are usually used to identify traffic lanes and then determine the steering angle of an autonomous vehicle in real time. The steering angle is calculated using a geometric model of various parameters including the orientation, position, and hardware specification of a camera in the machine vision system. To find the accurate values of the parameters, camera calibration is required. This paper presents a new camera-calibration algorithm using known traffic lane features, line thickness and lane width. The camera parameters considered are divided into two groups: Group I (the camera orientation, the uncertainty image scale factor, and the focal length) and Group II(the camera position). First, six control points are extracted from an image of two traffic lines and then eight nonlinear equations are generated based on the points. The least square method is used to find the estimates for the Group I parameters. Finally, values of the Group II parameters are determined using point correspondences between the image and its corresponding real world. Experimental results prove the feasibility of the proposed algorithm.

Stereo cameras calibration bases on Epipolar Rectification and its Application

  • Chaewieang, Pipat;Thepmanee, Teerawat;Kummool, Sart;Jaruvanawat, Anuchit;Sirisantisamrid, Kaset
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.246-249
    • /
    • 2003
  • The constraints necessary guarantee using the comparison of these extrinsic parameters, which each Rotation matrix and Translation Vector must be equal to the either, except the X-axis Translation Vector. Thus, we can not yet calculate the 3D-range measurement in the end of camera calibration. To minimize this disadvantage, the Epipolar Rectification has been proposed in the literature. This paper aims to present the development of Epipolar Rectification to calibrate Stereo cameras. The required computation of the transformation mapping between points in 3D-space is based on calculating the image point that appears on new image plane by using calibrated parameters. This computation is assumed from the rotating the old ones around their optical center until focal planes becomes coplanar, thereby containing the baseline, and the Z-axis of both camera coordinate to be parallel together. The optical center positions of the new extrinsic parameters are the same as the old camera, whereas the new orientation differs from the old ones by the suitable rotations. The intrinsic parameters are the same for both cameras. So that, after completed calibration process, immediately can calculate the 3D-range measurement. And the rectification determines a transformation of each image plane such that pairs of conjugate Epipolar lines become collinear and parallel to one of the image axis. From the experimental results verify the proposed technique are agreed with the expected specifications.

  • PDF

A Framework for Real Time Vehicle Pose Estimation based on synthetic method of obtaining 2D-to-3D Point Correspondence

  • Yun, Sergey;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.904-907
    • /
    • 2014
  • In this work we present a robust and fast approach to estimate 3D vehicle pose that can provide results under a specific traffic surveillance conditions. Such limitations are expressed by single fixed CCTV camera that is located relatively high above the ground, its pitch axes is parallel to the reference plane and the camera focus assumed to be known. The benefit of our framework that it does not require prior training, camera calibration and does not heavily rely on 3D model shape as most common technics do. Also it deals with a bad shape condition of the objects as we focused on low resolution surveillance scenes. Pose estimation task is presented as PnP problem to solve it we use well known "POSIT" algorithm [1]. In order to use this algorithm at least 4 non coplanar point's correspondence is required. To find such we propose a set of techniques based on model and scene geometry. Our framework can be applied in real time video sequence. Results for estimated vehicle pose are shown in real image scene.

Design and Fabrication of 10 GHz Substrate Integrated Waveguide Band Pass Filter Based on EM Simulation (10 GHz 대역 기판 집적 도파관 대역 통과 여파기의 EM 시뮬레이션을 이용한 설계 및 제작)

  • Lee, Won-Hee;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.99-109
    • /
    • 2010
  • Recently, SIW(Substrate Integrated Waveguide) is intensively studied because of its high Q and easy integration with other devices. However, lacks of analytic characterization of SIW makes it difficult an accurate design of a SIW filter along the conventional filter design method. In this paper, two kinds of a three-stage 10 GHz SIW bandpass filter of fractional bandwidth 10% are designed using 3D EM simulator HFSS based on the recently presented EM filter design method. Two types of a modified CPW to SIW transition is proposed and employed as a SIW to microstrip transition necessary for measurement. The transitions provide an easy measurement with commercial test fixture by TRL calibration. The two proposed transitions are included in the SIW filters. The fabricated filters shows the center frequency of 10 GHz, fractional bandwidth 10%, a return loss of about 12 dB, and insertion loss of about 0.8 dB.