• Title/Summary/Keyword: cooperative relay

Search Result 305, Processing Time 0.018 seconds

A Cooperative Transmission Strategy using Entropy-based Relay Selection in Mobile Ad-hoc Wireless Sensor Networks with Rayleigh Fading Environments

  • An, Beong-Ku;Duy, Tran Trung;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.147-162
    • /
    • 2009
  • In this paper, we propose a Cooperative Transmission Strategy using Entropy-based Relay Selection in Mobile Ad-hoc Wireless Sensor Networks(MAWSN) with Rayleigh Fading Environments. The main features and contributions of the proposed cooperative transmission strategy are as follows. First, entropy-based relay selection is used to improve data transmission reliability from a source node to a destination node. Second, we present a theoretical analysis model for the proposed cooperative transmission strategy with the outage probability of the end-to-end performance. The performance of our protocol is evaluated using analysis and simulation.

Effect of Relay Location in Cooperative Networks with Partially Differential Modulation Scheme (부분차등변조 방식을 이용한 협력네트워크에서의 중계기 위치의 영향)

  • Cho, Woong;Cho, Han-Byeog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.671-676
    • /
    • 2015
  • Cooperative networks eliminate shadow area using relay and enhance communication performance by creating virtual multi input multi output (MIMO) system. In this paper, we analyze the performance of cooperative networks which use coherent modulation scheme in source-relay nodes and differential modulation scheme in relay-destination nodes depending on the relay location. We consider the performance analysis of systems with and without the direct transmission between source and destination node where the direct transmission adopts differential modulation scheme. In addition, the performance of the system with fully differential modulation scheme is compared with the system using partially differential modulation scheme. The performance of system is based on the symbol error rate between source and destination node.

Performance Comparison of Differential Distributed Cooperative Networks with Modulation Scheme and Relay Location (변조방식 및 중계기 위치를 고려한 차등 분산 협력 네트워크의 성능비교)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.445-450
    • /
    • 2020
  • Cooperative networks provides the benefits of performance improvements and capacity increment when the source node transmits signal to the destination node using several relay nodes. In this paper, we consider the cooperative network where the transmission scheme between the source node and relay node use conventional binary signaling, whereas the transmission scheme between thee relay node and destination node adopt the differential space time coding signaling. We analyze the performance of the system depending on the modulation scheme, i.e., coherent and differential modulation, at the source-relay links. The performance depending on the relay location is also compared by considering modulation scheme and the number of relay node.

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

Cooperative Nano Communication in the THz Gap Frequency Range using Wireless Power Transfer

  • Samarasekera, A. Chaminda J.;Shin, Hyundong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5035-5057
    • /
    • 2019
  • Advancements in nanotechnology and novel nano materials in the past decade have provided a set of tools that can be used to design and manufacture integrated nano devices, which are capable of performing sensing, computing, data storing and actuation. In this paper, we have proposed cooperative nano communication using Power Switching Relay (PSR) Wireless Power Transfer (WPT) protocol and Time Switching Relay (TSR) WPT protocol over independent identically distributed (i.i.d.) Rayleigh fading channels in the Terahertz (THz) Gap frequency band to increase the range of transmission. Outage Probability (OP) performances for the proposed cooperative nano communication networks have been evaluated for the following scenarios: A) A single decode-and-forward (DF) relay for PSR protocol and TSR protocol, B) DF multi-relay network with best relay selection (BRS) for PSR protocol and TSR protocol, and C) DF multi-relay network with multiple DF hops with BRS for PSR protocol and TSR protocol. The results have shown that the transmission distance can be improved significantly by employing DF relays with WPT. They have also shown that by increasing the number of hops in a relay the OP performance is only marginally degraded. The analytical results have been verified by Monte-Carlo simulations.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

Robust Cooperative Relay Beamforming Design for Security

  • Gong, Xiangwu;Dong, Feihong;Li, Hongjun;Shao, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4483-4501
    • /
    • 2015
  • In this paper, we investigate a security transmission scheme at the physical layer for cooperative wireless relay networks in the presence of a passive eavesdropper. While the security scheme has been previously investigated with perfect channel state information(CSI) in the presence of a passive eavesdropper, this paper focuses on researching the robust cooperative relay beamforming mechanism for wireless relay networks which makes use of artificial noise (AN) to confuse the eavesdropper and increase its uncertainty about the source message. The transmit power used for AN is maximized to degrade the signal-to-interference-plus-noise-ratio (SINR) level at the eavesdropper, while satisfying the individual power constraint of each relay node and worst-case SINR constraint at the desired receiver under a bounded spherical region for the norm of the CSI error vector from the relays to the destination. Cooperative beamforming weight vector in the security scheme can be obtained by using S-Procedure and rank relaxation techniques. The benefit of the proposed scheme is showed in simulation results.

Optimal sensing period in cooperative relay cognitive radio networks

  • Zhang, Shibing;Guo, Xin;Zhang, Xiaoge;Qiu, Gongan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5249-5267
    • /
    • 2016
  • Cognitive radio is an efficient technique to improve spectrum efficiency and relieve the pressure of spectrum resources. In this paper, we investigate the spectrum sensing period in cooperative relay cognitive radio networks; analyze the relationship between the available capacity and the signal-to-noise ratio of the received signal of second users, the target probability of detection and the active probability of primary users. Finally, we derive the closed form expression of the optimal spectrum sensing period in terms of maximum throughput. We simulate the probability of false alarm and available capacity of cognitive radio networks and compare optimal spectrum sensing period scheme with fixed sensing period one in these performance. Simulation results show that the optimal sensing period makes the cognitive networks achieve the higher throughput and better spectrum sensing performance than the fixed sensing period does. Cooperative relay cognitive radio networks with optimal spectrum sensing period can achieve the high capacity and steady probability of false alarm in different target probability of detection. It provides a valuable reference for choosing the optimal spectrum sensing period in cooperative relay cognitive radio networks.

Trust Degree Information based Relay Selection in Cooperative Communication with Multiple Relays (다수의 릴레이가 존재하는 협력 통신 환경에서 신뢰도 정보 기반의 릴레이 선택 기법)

  • Ryu, Jong Yeol;Kim, Seong Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.509-515
    • /
    • 2017
  • In this paper, for a cooperative communication system with multiple relays, we consider a relay selection method by exploiting the trust degree information of relay nodes. In the cooperative communication system, we interpret the trust degree of relays as the probability that relay helps the communication between the transmitter and receiver. We first provide an expected achievable rate at the receiver by taking into account the both cases that the relay helps the transmission of transmitter and the relay does not help the transmission of transmitter according to its trust degree. For given trust degree information, we propose an efficient relay selection method to maximize the expected achievable rate at the receiver. For the various configurations, the simulation results confirm that the proposed relay selection method outperforms the conventional relay selection method, which does not consider the trust degree of relay nodes.

Performance Analysis of Cooperative Network Error Correcting Scheme Using Distributed Turbo Code and Power Allocation (양방향 중계 채널에서 네트워크 코딩을 이용한 분산 터보 부호 기법과 전력 할당의 성능 분석)

  • Lim, Jin-Soo;Ok, Jun-Ho;Yoo, Chul-Hae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.57-64
    • /
    • 2011
  • A two-way relay channel is a bidirectional cooperative communication channel between two nodes using a relay. In many cooperative communication schemes, a relay transmits its data to each node using separate channels. However, in the two-way relay channel, a relay can broadcast the network-coded signal to both nodes in a same time slot, which can increase the system throughput. In this paper, a new cooperative network error correcting scheme using distributed turbo code in a two-way relay channel is proposed. The proposed scheme not only increases the system throughput using network code but also improves the performance by utilizing the LLR information from relay node and other user node through distributed turbo code. Also, a power allocation scheme is investigated for various channel conditions to improve the system performance.