• 제목/요약/키워드: cooperative filtering algorithm

검색결과 4건 처리시간 0.068초

센서태그 통합 데이터 필터링에 관한 연구 (Cooperative Data Stream Filtering for Sensor Tag)

  • 류승완;오슬기;박세권;오동옥
    • 한국통신학회논문지
    • /
    • 제36권8A호
    • /
    • pp.683-690
    • /
    • 2011
  • 센서 태그의 데이터는 태그 정보와 센싱 정보를 동시에 가지며 미들웨어 또는 상위 레벨에서의 필터링 및 가공이 필요하다는 특정을 가지고 있다. 기존의 필터링 알고리즘에서는 태그데이터와 센서 데이터를 각각 필터링하는 알고리즘이 주로 제안되었다. 그러나 센서 태그의 사용 요구는 점차 증가하고 있으며, 사용요구에 적합한 필터링을 위해서는 센싱 데이터와 RFID 데이터를 통합 처리할 수 있는 새로운 필터링 알고리즘이 필요하다. 본 논문에서 제안하는 필터링 알고리즘에서는 각 태그의 시간 축에 대한 필터링만을 고려하는 것이 아니라 공간적으로 근접한 태그의 데이터도 함께 고려하여 필터링하여 오류 및 이벤트 검출의 정확성을 향상시키고 데이터의 대표값 저장으로 데이터 저장에 필요한 비용을 감소시킬 수 있다.

Mobile Robot Localization using Range Sensors: Consecutive Scanning and Cooperative Scanning

  • Lee Sooyong;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2005
  • This paper presents an obstacle detection algorithm based on the consecutive and the cooperative range sensor scanning schemes. For a known environment, a mobile robot scans the surroundings using a range sensor that can rotate 3600°. The environment is rebuilt using nodes of two adjacent walls. The robot configuration is then estimated and an obstacle is detected by comparing characteristic points of the sensor readings. In order to extract edges from noisy and inaccurate sensor readings, a filtering algorithm is developed. For multiple robot localization, a cooperative scanning method with sensor range limit is developed. Both are verified with simulation and experiments.

하둡 및 스파크 기반의 협력 필터링 추천 알고리즘 연구 (A Study on Collaborative Filtering Recommendation Algorithm base on Hadoop and Spark)

  • 정영교;김상영;이정준;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제53차 동계학술대회논문집 24권1호
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.

  • PDF

소셜미디어에서 에코챔버에 의한 필터버블 현상 개선 방안 연구 (A Study on the Improvement of Filter Bubble Phenomenon by Echo Chamber in Social Media)

  • 조진형;김규정
    • 한국콘텐츠학회논문지
    • /
    • 제22권5호
    • /
    • pp.56-66
    • /
    • 2022
  • 최근 소셜미디어로 접하는 정보 증가로 알고리즘 기반 추천 형식은 사용자 정보에 기반하여 선별적으로 정보를 제공하는데, 이러한 알고리즘은 자주 에코챔버(Echo Chamber)에 의한 필터버블(FilterBuble) 효과를 일으킨다. 에코챔버는 밀폐된 시스템 안에서만 이루어지는 의사소통으로 인해 신념이 증폭되거나 강화되는 현상을 의미하고 필터버블은 정보 제공자가 이용자의 관심사에 맞춰 맞춤형 정보를 제공하여 이용자는 필터링된 정보만 접하게 되는 현상을 의미한다. 본 연구의 목적은 이러한 에코챔버에 의한 필터버블 현상을 개선하는 방안으로 정보를 효율적으로 선별하는 방법을 제시하는 것이다. 연구 진행 방법은 유튜브, 페이스북, 그리고 아마존에서 사용되는 추천 알고리즘을 분석하였다. 본 연구에서는 추천 알고리즘으로 생기는 문제점에 대해서 소셜미디어 사용자의 비판적 사고능력 훈련이나 자기보존법칙에 따른 객관적 윤리 기준 강화 등의 인문학적 해결 방안과 모델 기반 협력 필터링이나 교차적 추천 방식의 기술적 해결 방안을 제시하였다. 결과적으로 추천 알고리즘은 지속적 기술 보완과 새로운 기법 개발을 위한 노력이 이루어져야 하며, 소셜미디어를 대하는 사용자는 비판적 사고 훈련과 정치적 의사소통 교육을 통해 인지부조화를 이겨내고 확증편향에 빠지지 않도록 하는 인문학적 노력이 병행되어야 한다.