• Title/Summary/Keyword: cooperative control

Search Result 713, Processing Time 0.028 seconds

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System (인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • Sim, Kwee-Bo;Lee, Dong-Wook;Sun, Sang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

A Cooperative Fuzzy and CMAC Control for Cartpole System (CMAC에 의한 협동 퍼지 제어계의 운반차-막대 시스템 제어)

  • Kwon Sung-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.349-356
    • /
    • 2006
  • A cartpole system is controlled by a control system consisting of two fuzzy controllers cooperating by a CMAC. Each controller uses 2 different input variables and yields the control force provided to the CMAC. The cooperation is due to training of the CMAC supervised by a judge which selects training information for the CMAC between two fuzzy controllers. The control scheme could be appreciated in terms of the tight structure of the controller, simple cooperating scheme due to the CMAC training, and accomplishing control goal that could not be attained by individual controllers.

Study for Control Algorithm of Robust Multi-Robot in Dynamic Environment (동적인 환경에서 강인한 멀티로봇 제어 알고리즘 연구)

  • 홍성우;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.249-254
    • /
    • 2001
  • Abstract In this paper, we propose a method of cooperative control based on artifical intelligent system in distributed autonomous robotic system. In general, multi-agent behavior algorithm is simple and effective for small number of robots. And multi-robot behavior control is a simple reactive navigation strategy by combining repulsion from obstacles with attraction to a goal. However when the number of robot goes on increasing, this becomes difficult to be realized because multi-robot behavior algorithm provide on multiple constraints and goals in mobile robot navigation problems. As the solution of above problem, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for obstacle avoidance. Here, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for their direction to avoid obstacle. Our focus is on system of cooperative autonomous robots in environment with obstacle. For simulation, we divide experiment into two method. One method is motor schema-based formation control in previous and the other method is proposed by this paper. Simulation results are given in an obstacle environment and in an dynamic environment.

  • PDF

Fair Power Control Using Game Theory with Pricing Scheme in Cognitive Radio Networks

  • Xie, Xianzhong;Yang, Helin;Vasilakos, Athanasios V.;He, Lu
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2014
  • This paper proposes a payment-based power control scheme using non-cooperative game with a novel pricing function in cognitive radio networks (CRNs). The proposed algorithm considers the fairness of power control among second users (SUs) where the value of per SU' signal to noise ratio (SINR) or distance between SU and SU station is used as reference for punishment price setting. Due to the effect of uncertainty fading environment, the system is unable to get the link gain coefficient to control SUs' transmission power accurately, so the quality of service (QoS) requirements of SUs may not be guaranteed, and the existence of Nash equilibrium (NE) is not ensured. Therefore, an alternative iterative scheme with sliding model is presented for the non-cooperative power control game algorithm. Simulation results show that the pricing policy using SUs' SINR as price punishment reference can improve total throughput, ensure fairness and reduce total transmission power in CRNs.

A Study On D-Shortage Control Hyper System Using MRP and JIT (MRP와 JIT를 융합한 D-결품관리 시스템에 관한 연구)

  • 조동수;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.63-74
    • /
    • 1992
  • This study proposes D- shortage control system which is a convenient tool for cooperative companies to reduce shortages which frequently break out between the manufacturing companies and the cooperative companies. On the ground of theoretical analysis of MRP and JIT system, D- shortage control system sets up a schedule that secures the delivery date by precedent scheduling( D-) comparing with MRP It also syncronizes business, production and release, and builds the pull system comparing with JIT. The factors causing shotages are the scheduling absurdity and the controlling absurdity. The scheduling absurdity can be settled by the calculating required quantity method of MRP and the controlling absurdity can be settled by daily control of business, production and pruchasing fuctions by the pull system of JIT. And the inventory and the WIP can be reduced by the operating of PULL system and by the settlement of D- shortage control practices. The Application of D- shortage control system, therefore, enables the rationalization of logistics and reduces the inventory And it leads to the reinforced competitiveness and the security of subsistence of manufacturer by the cost ruduction, the reduction of financial difficulty, and the insurance of the delivery date.

  • PDF

A Study on the Cooperative Organization Model among Family Farms for the Value Enhancement of Crop-Livestock Cycling Organic Agriculture - Case of Crop-Livestock Cycling Organic Pig Farm - (경종-축산 순환 유기농업의 가치 증진을 위한 농가 간 협동조직화 모델 연구 - 경종-축산 순환 양돈 농가를 사례로 -)

  • Choi, Deog-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.367-386
    • /
    • 2020
  • The significance of this study was to analyze the quality value of organic livestock pork for the first time based on the results of managing and testing the cycling organic farming of black pork and vegetables within farm for two years. The results of analysis could be summarized as follows. First, the pork of experimental group with crop-livestock cycling farming showed the excellent quality and high consumer preference compared to the control group of general pork or pork from non-crop-livestock cycling organic farming. In the content ratio of Omega-3 as a representative essential fatty acid, it was 1.46 that was about 2.8 times more than general pork (0.52). In case of Omega-6, it had about 2.5 times more than general pork. Especially, the U/S ratio value which was the content ratio of Unsaturated Fatty Acid (UFA, U) of Saturated Fatty Acid (SFA, S), was largely shown in pork (2.93) from cycling organic farming. Second, it would be necessary to maintain the economies of scope shown in crop-livestock cycling organic farming, and the high quality value of livestock products. For this, there should be a value chain model that could realize the economies of scope and economies of scale at the same time based on scaling and diversification through cooperative organization between farmers. Through this, it would be possible to establish a cycling model called 'community cooperative agriculture' by forming local internal markets through cooperation of production-processing and integration of distribution-sale-consumption. For the managerial activation of this cooperative organization, the government should promote/support the small crop-livestock cycling organic farming cooperative organization in local unit. For securing the reliability of crop-livestock cycling organic agricultural products and crop-livestock cycling organic livestock products, it would be necessary to review the introduction of Participatory Guarantee System (PGS).

CooRP: A Cooperative Routing Protocol in Mobile Ad-hoc Wireless Sensor Networks (CooRP: 모바일 Ad-hoc 무선 센서 네트워크에서 협력 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang;Kim, Nam-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • In this paper, In this paper, we propose a Cooperative Routing Protocol (CooRP) for supporting network convergence and transmission services efficiently in mobile ad-hoc wireless sensor networks with Rayleigh fading environments. The main contributions and features of this paper are as follows. First, the routing routes are decided on route stability based on entropy concepts using mobility of nodes within the direction guided line region to increase the operational lifetime of routes as well as reduce control overhead for route construction. Second, a cooperative data transmission strategy based on the constructed stable routing route is used to increase packet delivery ratio with advanced SNR. Third, a theoretical analysis for cooperative data transmission of the proposed CooRP with outage probability is presented. The performance evaluation of the proposed CooRP is performed via simulation using OPNET and analysis. The results of performance evaluation show that the proposed CooRP by using stable routing routes and cooperative transmission can increase packet delivery ratio efficiently.

Rediscovering A Path to Aging in Place: Development of Housing Cooperatives for Rural Elderly

  • Lee, Hyun-Jeong
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.31-40
    • /
    • 2011
  • Profit-keeping behaviors naturally occur in the market to satisfy consumers, and the logic behind it lies in the economies of scale. On the flip side, some commodities transacted in the market are not available or can not be easily acquired unless the demand is high enough. Under this proposition, some consumers rise and find their own solution to meet the services at a reasonable cost or at an adequate level. The commonly adopted way is to establish a cooperative, and it stirs purchasing power by pooling resources and further bargains price and service quality. As a consumer cooperative, housing cooperatives notably found in rural towns enable the elderly to continue independent living. This study is to take a closer look at residential life of the rural elderly in housing cooperatives. Utilizing in-depth focus group interviews with 40 residents in four housing cooperatives, this qualitative research draws main factors affecting the decision to move in, residential assessment, and strengths and weakness of living in a housing cooperative. The primary factor influencing the moving decision is to continue to independent living in a familiar community, and the bottom line is planning ahead. Frailty and bereavement are found to be the leading occasions for them to move. The participants are satisfied with the independent living arrangement, and particularly, cited such features as safety and security, elderly-friendly design, common spaces, freedom, social activities and efficient living. Also, it is stated that some cooperative natures such as control over the property and giving a voice on management render positive impacts on the satisfaction with communal living. In spite of all the benefits and strengths, participants face with a public notion that an independent living arrangement like a housing cooperative has never done before in rural towns, so that most people recognize it as part of dependent living arrangements like nursing home.

Throughput and Delay Analysis of a Reliable Cooperative MAC Protocol in Ad Hoc Networks

  • Jang, Jaeshin;Kim, Sang Wu;Wie, Sunghong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.524-532
    • /
    • 2012
  • In this paper, we present the performance evaluation of the reliable cooperative media access control (RCO-MAC) protocol, which has been proposed in [1] by us in order to enhance system throughput in bad wireless channel environments. The performance of this protocol is evaluated with computer simulation as well as mathematical analysis in this paper. The system throughput, two types of average delays, average channel access delay, and average system delay, which includes the queuing delay in the buffer, are used as performance metrics. In addition, two different traffic models are used for performance evaluation: The saturated traffic model for computing system throughput and average channel access delay, and the exponential data generation model for calculating average system delay. The numerical results show that the RCO-MAC protocol proposed by us provides over 20% more system throughput than the relay distributed coordination function (rDCF) scheme. The numerical results show that the RCO-MAC protocol provides a slightly higher average channel access delay over a greater number of source nodes than the rDCF. This is because a greater number of source nodes provide more opportunities for cooperative request to send (CRTS) frame collisions and because the value of the related retransmission timer is greater in the RCO-MAC protocol than in the rDCF protocol. The numerical results also confirm that the RCO-MAC protocol provides better average system delay over the whole gamut of the number of source nodes than the rDCF protocol.