• Title/Summary/Keyword: cooperative NOMA

Search Result 14, Processing Time 0.022 seconds

Haptic Communication for Cooperative Object Manipulation

  • Noma, Haruo;Miyasato, Tsutomu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.83-88
    • /
    • 1997
  • In this study, we focus on precise and natural cooperative object manipulation in a virtual space. We introduce two virtually expanded physical laws-virtual mechanical equilibrium on a rigid object and exclusive object arrangement-to create realistic cooperative manipulation. We have built a trial system according to our proposed design. The method is expected to allow users to exchange intended manipulation by haptic and visual channels.

  • PDF

On the block error rate performance of cooperative non-orthogonal multiple access short-packet communications with full-duplex relay and partial relay selection

  • Ha Duy Hung;Hoang Van Toan;Tran Trung Duy;Le The Dung;Quang Sy Vu
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.446-460
    • /
    • 2024
  • In this paper, we mathematically investigate a downlink non-orthogonal multiple access (NOMA) system for short-packet communications (SPC) in which the near users are used as full-duplex (FD) relays to forward intended signals from the source to a far user. In addition, partial relay selection is employed to enhance the performance of the FD relays under the impact of imperfect interference cancellation. At the far user, selection combining (SC) or maximal ratio combining (MRC) is employed to combine the signals received from the source and the selected FD relay. The analytical expressions for the average block error rate (BLER) of two users over flat Rayleigh fading channels are derived. Furthermore, closed-form asymptotic expressions of the average BLERs at the near and far users in high signal-to-noise ratio (SNR) regimes are obtained. The numerical results show that the analytical BLERs of the near user and far user closely match the simulation results.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.