DOI QR코드

DOI QR Code

On the block error rate performance of cooperative non-orthogonal multiple access short-packet communications with full-duplex relay and partial relay selection

  • Ha Duy Hung (Wireless Communications Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University) ;
  • Hoang Van Toan (Telecommunications University) ;
  • Tran Trung Duy (Posts and Telecommunications Institute of Technology) ;
  • Le The Dung (Faculty of Computing Fundamentals, FPT University) ;
  • Quang Sy Vu (Faculty of Automotive Engineering, School of Technology, Van Lang University)
  • Received : 2023.03.28
  • Accepted : 2023.08.15
  • Published : 2024.06.20

Abstract

In this paper, we mathematically investigate a downlink non-orthogonal multiple access (NOMA) system for short-packet communications (SPC) in which the near users are used as full-duplex (FD) relays to forward intended signals from the source to a far user. In addition, partial relay selection is employed to enhance the performance of the FD relays under the impact of imperfect interference cancellation. At the far user, selection combining (SC) or maximal ratio combining (MRC) is employed to combine the signals received from the source and the selected FD relay. The analytical expressions for the average block error rate (BLER) of two users over flat Rayleigh fading channels are derived. Furthermore, closed-form asymptotic expressions of the average BLERs at the near and far users in high signal-to-noise ratio (SNR) regimes are obtained. The numerical results show that the analytical BLERs of the near user and far user closely match the simulation results.

Keywords

Acknowledgement

The authors would like to thank Van Lang University, Vietnam, for funding this work.

References

  1. G. Durisi, T. Koch, and P. Popovski, Toward massive, ultrareliable, and low-latency wireless communication with short packets, Proc. IEEE 104 (2016), no. 9, 1711-1726. https://doi.org/10.1109/JPROC.2016.2537298
  2. Y. Polyanskiy, H. V. Poor, and S. Verdu, Channel coding rate in the finite blocklength regime, IEEE Trans. Inf. Theory 56 (2010), no. 5, 2307-2359. https://doi.org/10.1109/TIT.2010.2043769
  3. L. Zhang and Y. Liang, Average throughput analysis and optimization in cooperative IoT networks with short packet communication, IEEE Trans. Veh. Technol. 67 (2018), no. 12, 11549- 11562. https://doi.org/10.1109/TVT.2018.2871259
  4. Y. Yang, Y. Song, and F. Cao, HARQ assisted short-packet communications for cooperative networks over Nakagami-m fading channels, IEEE Access 8 (2020), 151171-151179. https://doi.org/10.1109/ACCESS.2020.3017148
  5. L. Wei, Y. Yang, and B. Jiao, Secrecy throughput in full-duplex multiuser MIMO short-packet communications, IEEE Wireless Commun. Lett. 10 (2021), no. 6, 1339-1343. https://doi.org/10.1109/LWC.2021.3066321
  6. C. D. Ho, T. V. Nguyen, T. Huynh-The, T. T. Nguyen, D. B. da Costa, and B. An, Short-packet communications in wireless-powered cognitive IoT networks: performance analysis and deep learning evaluation, IEEE Trans. Veh. Technol. 70 (2021), no. 3, 2894-2899. https://doi.org/10.1109/TVT.2021.3061157
  7. C. Feng, H. M. Wang, and H. V. Poor, Reliable and secure short-packet communications, IEEE Trans. Wireless Commun. 21 (2022), no. 3, 1913-1926. https://doi.org/10.1109/TWC.2021.3108042
  8. A. Agarwal, A. K. Jagannatham, and L. Hanzo, Finite block-length non-orthogonal cooperative communication relying on SWIPT-enabled energy harvesting relays, IEEE Trans. Commun. 68 (2020), no. 6, 3326-3341. https://doi.org/10.1109/TCOMM.2020.2976005
  9. X. Lai, Q. Zhang, and J. Qin, Cooperative NOMA short-packet communications in flat Rayleigh fading channels, IEEE Trans. Veh. Technol. 68 (2019), no. 6, 6182-6186. https://doi.org/10.1109/TVT.2019.2912391
  10. F. Salehi, N. Neda, M.-H. Majidi, and H. Ahmadi, Cooperative NOMA-based user pairing for URLLC: a max-min fairness approach, IEEE Syst. J. 16 (2021), no. 3, 3833-3843.
  11. X. Lu, P. Wang, G. Li, D. Niyato, and Z. Li, Short-packet back-scatter assisted wireless-powered relaying with NOMA: mode selection with performance estimation, IEEE Trans. Cog. Commun. Netw. 8 (2021), no. 1, 216-231.
  12. C. Guo, C. Guo, S. Zhang, and Z. Ding, Adaptive relaying protocol design and analysis for short-packet cooperative NOMA, IEEE Trans. Veh.Technol. 72 (2022), 2689-2694.
  13. T.-H. Vu, T.-V. Nguyen, Q.-V. Pham, D. B. da Costa, and S. Kim, Short-packet communications for UAV-based NOMA systems under imperfect CSI and SIC, IEEE Trans. Cog. Commun. Netw. 9 (2022), 463-478.
  14. L. Yuan, Q. Du, and F. Fang, Performance analysis of full-duplex cooperative NOMA short-packet communications, IEEE Trans. Veh. Technol. 71 (2022), 13409-13414. https://doi.org/10.1109/TVT.2022.3199541
  15. X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, Short-packet downlink transmission with non-orthogonal multiple access, IEEE Trans. Wireless Commun. 17 (2018), no. 7, 4550-4564. https://doi.org/10.1109/TWC.2018.2827368
  16. J. Zheng, Q. Zhang, and J. Qin, Average block error rate of downlink NOMA short-packet communication systems in Nakagami-m fading channels, IEEE Commun. Lett. 23 (2019), no. 10, 1712-1716. https://doi.org/10.1109/LCOMM.2019.2930999
  17. X. Lai, Q. Zhang, and J. Qin, Downlink NOMA networks with hybrid long-packet and short-packet communications in flat Rayleigh fading channels, IEEE Syst. J. 14 (2019), 3410-3413.
  18. S. Han, X. Xu, Z. Liu, P. Xiao, K. Moessner, X. Tao, and P. Zhang, Energy-efficient short packet communications for uplink NOMA-based massive MTC networks, IEEE Trans. Veh. Technol. 68 (2019), no. 12, 12066-12078. https://doi.org/10.1109/TVT.2019.2948761
  19. Y. Gu, H. Chen, Y. Li, and B. Vucetic, Ultra-reliable short-packet communications: half-duplex or full-duplex relaying? IEEE Wireless Commun. Lett. 7 (2018), no. 3, 348-351. https://doi.org/10.1109/LWC.2017.2777857
  20. X. Lai, T. Wu, Q. Zhang, and J. Qin, Average secure BLER analysis of NOMA downlink short-packet communication systems in flat Rayleigh fading channels, IEEE Trans. Wireless Commun. 20 (2020), no. 5, 2948-2960.
  21. M. K. Simon and M.-S. Alouini, Digital communications over fading channels [book review], IEEE Trans. Inf. Theory 54 (2008), no. 7, 3369-3370. https://doi.org/10.1109/TIT.2008.924676
  22. Y. Yu, H. Chen, Y. Li, Z. Ding, and B. Vucetic, On the performance of non-orthogonal multiple access in short-packet communications, IEEE Commun. Lett. 22 (2017), no. 3, 590-593.
  23. H. D. Hung, T. T. Duy, P. N. Son, L. T. Thuong, and M. Voznak, Security-reliability trade-off analysis for rateless codes-based relaying protocols using NOMA, cooperative jamming and partial relay selection, IEEE Access 9 (2021), 131087-131108. https://doi.org/10.1109/ACCESS.2021.3114343
  24. N. N. Tan, T. T. Duy, T. T. Phuong, M. Voznak, L. Xingwang, and H. V. Poor, Security-reliability trade-off analysis for rateless codes-based relaying protocols using NOMA, cooperative jamming and partial relay selection, IEEE Trans. Veh. Technol. 71 (2022), no. 6, 6173-6188. https://doi.org/10.1109/TVT.2022.3158340
  25. Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, Full-duplex device-to-device-aided cooperative nonorthogonal multiple access, IEEE Trans. Veh. Technol. 66 (2016), no. 5, 4467-4471.
  26. U. Siddique, H. Tabassum, and E. Hossain, Downlink spectrum allocation for in-band and out-band wireless backhauling of full-duplex small cells, IEEE Trans. Commun. 65 (2017), no. 8, 3538-3554. https://doi.org/10.1109/TCOMM.2017.2699183
  27. M. Vaezi, R. Schober, Z. Ding, and H. V. Poor, Non-orthogonal multiple access: common myths and critical questions, IEEE Wireless Commun. 26 (2019), no. 5, 174-180. https://doi.org/10.1109/MWC.2019.1800598
  28. D. Bharadia, E. McMilin, and S. Katti, Full duplex radios, Proc. Conf. ACM SIGCOMM, 2013, pp. 375-386.
  29. X. Wang, M. Jia, Q. Guo, I. W.-H. Ho, and F. C.-M. Lau, Fullduplex relaying cognitive radio network with cooperative nonorthogonal multiple access, IEEE Syst. J. 13 (2019), no. 4, 3897-3908. https://doi.org/10.1109/JSYST.2019.2927509
  30. B. Makki, T. Svensson, and M. Zorzi, Finite block-length analysis of the incremental redundancy HARQ, IEEE Wireless Commun. Lett. 3 (2014), no. 5, 529-532. https://doi.org/10.1109/LWC.2014.2353059
  31. N. P. Le and K. N. Le, Performance analysis of NOMA shortpacket communications with QoS-based SIC detecting order, IEEE Wireless Commun. Lett. 11 (2021), no. 3, 617-621.
  32. Y. Yuan, Y. Xu, Z. Yang, P. Xu, and Z. Ding, Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems, IEEE Trans. Commun. 67 (2019), no. 8, 5753-5767. https://doi.org/10.1109/TCOMM.2019.2914386
  33. G. A. Ropokis, A. A. Rontogiannis, and K. Berberidis, BER performance analysis of cooperative DaF relay networks and a new optimal DaF strategy, IEEE Trans. Wireless Commun. 10 (2011), no. 4, 1044-1049. https://doi.org/10.1109/TWC.2011.020811.101344
  34. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, San Diego, California, USA, 2014.