• Title/Summary/Keyword: cooperation tool

Search Result 575, Processing Time 0.023 seconds

The Development of Tool Position Tracking system Based on UWB for Automotive Assembly Process (자동차 조립공정 작업의 실시간 모니터링을 위한 UWB 기반 공구위치 추적 시스템 개발)

  • Jeong, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.657-661
    • /
    • 2019
  • The automobile industry is representative industry of complex characteristics, which employing 10 million people, the largest manufacturing industry over $1 trillion in sales and assembling with 20,000 parts to make complete automobile and automobile assembly processes have a lower automation rate than other processes, which is labor intensive processes of assembling to painted body with 3,000 components such as seats, built-in, instrument panel, glass, engine, transmission units. However, the current assembly process does not have real-time monitoring. If a tool position tracking system is adapted to assembly process for directing consistent work order and checking for missing work, the productivity and quality improvement of the assembly process can be achieved by preemptively preventing possible defects in the assembly process. So, this paper aims to develop a Tool Position tracking system using UWB(Ultra Wide Band) with trilateration and proves their effectiveness for real-time monitoring of automotive assembly process.

Evaluation on Tensile Characteristics of Extruded Aluminum Panel Joints by Friction Stir Welding Parameters (마찰교반 용접변수에 따른 알루미늄 압출판재의 인장특성 평가)

  • Lim, Byung-Chul;Kim, Young-Moon;Kim, Won-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.614-618
    • /
    • 2018
  • The changes in the mechanical properties according to the width of the tool shoulder, rotation speed and moving speed in friction stir welding (FSW) are evaluated using Al 6061-T6. The results indicated that the tensile strength value increases with increasing rotation speed. The higher the moving speed of the tool shoulder, the lower the tensile strength, regardless of the tool type. A higher tensile strength value was generally obtained with a tool shoulder diameter of 12mm (TSD12) than with 8mm. When the moving and rotation speeds exceed a limiting value, a stabilization stage is reached, in which (the tool shoulder diameter?) no longer affects the material properties. At a tool shoulder diameter of 8mm (TSD8), the material properties are decreased and the mixture of material in the welding area is incomplete in comparison with the tool type of TSD12. The tensile strength value is decreased at a rotation speed of 1500 rpm. As a result, a rotation speed higher than the threshold value is needed in order for and the transition temperature to be reached, which allows the complete mixing of the material in the welding area.

Development of Six Thinking Hats Online Synchronous Discussion Tool to Facilitate Structured Interaction and Communication (구조화된 상호작용과 의사소통을 촉진하기 위한 육색사고모자 온라인 실시간 토론 도구 개발)

  • Koo, Yang-Mi;Seo, Jeong-Hee
    • Journal of The Korean Association of Information Education
    • /
    • v.16 no.1
    • /
    • pp.107-121
    • /
    • 2012
  • The purpose of this study is to develop online synchronous discussion tool based on De Bono's six thinking hats and to investigate availability and improvements of the tool. Analysis of previous studies about synchronous online discussion and six thinking hats and development of design strategies from 3C model, communication, coordination, cooperation, were done. Six thinking hats online synchronous discussion tool was developed and applied four times for 5 weeks in the 'fundamentals of computer science' course of college students majored in computer science. Qualitative data from open-ended survey and reflection paper of students, and field note of participant researchers were analyzed. As a result, six thinking hats online synchronous discussion tool facilitated student's interaction and communication in the aspect of communication, coordination, and cooperation of 3C model. However, some improvements are needed to overcome the limits of text-based online communication and to use six thinking hats online synchronous discussion tool as a tool to promote structured interaction and communication.

  • PDF

Harmonic Analysis Method for Power Quality Problems (전기품질 분석을 위한 고조파 해석 기법)

  • 사근하;이의용;설용태
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.147-149
    • /
    • 2001
  • 본 논문에서는 산업용 전력시스템의 전기품질을 평가하기 위한 고조파 해석기법을 제시하였다. 먼저 수변전계통의 전압강하, 고조파, 고장전류 등을 PTW Tool을 이용해서 시뮬레이션 하였으며, 실제 계통에서의 운전중 고조파 현상을 실측치와 비교 분석함으로써 기존 시뮬레이션 기법의 정확성을 검증하였다.

IFC-Based Computational Support Tool for Managing and Using Design Planning Information: Case Application and Evaluation

  • Seo, Jong-Cheol;Kim, In-Han
    • Architectural research
    • /
    • v.13 no.2
    • /
    • pp.3-12
    • /
    • 2011
  • Planning information generated during initial architectural design phases significantly influences subsequent phases, and is implemented into architectural design models during the design process. However, failures to manage and use planning information in Korean design offices remain common. Current design tools that incorporate planning information also do not address the issue of interoperability during the life cycles of buildings. To address these problems, the Industry Foundation Classes (IFC) extension model was developed to accommodate the need to manage and use planning information for cooperation between design offices carrying out multidisciplinary tasks. This paper introduces a purpose-built software tool that implements the IFC model and demonstrates the efficiency of the proposed method with the software tool.

BS2fit: A NEW TOOL FOR ANALYSING SPECTRA AND COLOR-MAGNITUDE DIAGRAMS OF GALAXIES AND CLUSTERS

  • LI, ZHONGMU;MAO, CAIYAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.539-541
    • /
    • 2015
  • We present a new tool for studying the spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) of galaxies and star clusters, BINARY STAR TO FIT (BS2fit). A key feature of this tool is that it takes the effects of binaries, stellar rotation and star formation history into account. It can be used to determine many parameters, including distance, extinction, binary fraction, rotational star fraction, and star formation history. Because more factors are included than in previous tools, BS2fit can potentially give new insight into the properties of galaxies and clusters. One can contact the authors for cooperation and helps via.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle (철도차량 적용을 위한 Al alloy(A6005)-Mg alloy(AZ61) 이종소재 마찰교반용접 특성 연구)

  • Lee, Woo-Geun;Kim, Jung-Seok;Sun, Seung-Ju;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.706-713
    • /
    • 2016
  • In this study, the welding characteristics of friction stir welding were investigated in accordance with the tool plunge position and cooling to the base materials for the joining of dissimilar materials (A6005-AZ61). Other different welding conditions, such as the tool rotation speed and welding speed, were fixed to 500rpm-30mm/min, respectively, and welding was then carried out by placing the Mg alloy (AZ61) on the advancing side and Al alloy(A6005) on the retreating side. Welding was conducted under six different conditions. To investigate the welding characteristic, tensile test and microstructure observations using an optical microscope were carried out. As the tensile test result, the maximum strength appeared under the condition in which the tool is moved 1 mm to the Mg alloy direction and cooling to the base materials. Under the same welding conditions, the strength with cooling was approximately two times higher than that without cooling. The tool was located in each direction of 1.7 mm from the weld line. Therefore, in the excessive off-set of tool position, the welding integrity was in an extremely poor condition due to the lack of stirring. This study was confirmed by the A6005-AZ61 dissimilar friction stir welding the welding speed and the tool rotation speed. In addition, the temperature control and tool plunge position are important welding parameters.

Study on Temperature Characteristics of Friction Stir Welding Process by Numerical Analysis (수치해석을 활용한 마찰교반용접 공정의 온도 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.513-518
    • /
    • 2019
  • Friction Stir Welding is a welding technique for metal materials that utilizes the heat generated by friction between the material to be welded and the welding tool that rotates at high speed. In this study, a numerical analysis method was used to analyze the change in the internal temperature of the welded material during friction stir welding. As the welding target material, AZ31 magnesium alloy was applied and the welding phenomenon was considered a flow characteristic, in which a melting-pool was formed. FLUENT was used as the numerical tool to perform the flow analysis. For flow analysis of the welding process, the welding material was assumed to be a high viscosity Newtonian fluid, and the boundary condition of the welding tool and the material was considered to be the condition that friction and slippage occur simultaneously. Analyses were carried out for various rotational speeds and the translational moving speed of the welding tool as variables. The analysis results showed that the higher the rotational speed of the welding tool and the slower the welding tool movement speed, the higher the maximum temperature in the material increases. Moreover, the difference in the rotational speed of the welding tool has a greater effect on the temperature change.

A Design and Development of Multi Air gun for suction and shooting a jet of compressed air (압축공기의 흡입과 분사를 위한 멀티 에어건의 설계 개발)

  • Jeong, Seok-Min;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4944-4949
    • /
    • 2012
  • The purpose of this paper is concerned with a development of air gun for use at work. A air gun is the tool to remove of cutting fluid and workpiece chip in industrial field used machine tool. And it generally is used to shoot a jet of compressed air. Worker must prepare respectively air gun for suction and shooting a jet of compressed air. Therefore we has developed new air gun. In this paper we research for design and analysis of it. The air gun is composed of body, pipe, opening and shutting unit, turning unit, air tube and elements for fabrication. The developed air gun is experimented to confirm the efficiency.