• 제목/요약/키워드: cooling tower blowdown water

검색결과 3건 처리시간 0.019초

Membrane distillation of power plant cooling tower blowdown water

  • Ince, Elif;Uslu, Yasin Abdullah
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.321-330
    • /
    • 2019
  • The objective of this study was to examine the recovery of the power plant cooling tower blowdown water (CTBD) by membrane distillation. The experiments were carried out using a flat plate poly vinylidene fluoride (PVDF) membrane with a pore diameter of $0.22{\mu}m$ by a direct contact membrane distillation unit (DCMD). The effects of operating parameters such as transmembrane temperature difference (${\Delta}T$), circulation rate and operating time on permeate flux and membrane fouling have been investigated. The results indicated that permeate flux increased with increasing ${\Delta}T$ and circulation rate. Whereas maximum permeate flux was determined as $47.4L/m^2{\cdot}h$ at ${\Delta}T$ of $50^{\circ}C$ for all short term experiments, minimum permeate flux was determined as $7.7L/m^2{\cdot}h$ at ${\Delta}T$ of $20^{\circ}C$. While $40^{\circ}C$ was determined as the optimum ${\Delta}T$ in long term experiments. Inorganic and non-volatile substances caused fouling in the membranes.

한빛원전 폐수지 제염공정 개발연구 (Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant)

  • 성기홍
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토 (Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater)

  • 강구;엄병환;김영기;박성직
    • 한국농공학회논문집
    • /
    • 제55권5호
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.