• Title/Summary/Keyword: cooling time

Search Result 1,660, Processing Time 0.032 seconds

Analysis of Problems of Food Service Establishments Contributing to Food Poisoning Outbreaks Discovered through the Epidemiological Studies of Some Outbreaks (식중독 발생의 사례 통해 본 집단급식의 문제접 분석)

  • 김종규
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.3
    • /
    • pp.240-253
    • /
    • 1997
  • The main problems contributing to food poisoning outbreaks in institutional settings and a home were reviewed and analyzed through the epidemiological investigations of food poisoning. The major documented factors included improper holding temperatures, inadequate cooking, poor personal hygiene, cross-contamination and contaminated equipment, food from unsafe sources, failure to follow food hygiene policies, and lack of education, training, monitoring and superivision. Usually more than one factor contributed to the development of an outbreak. (1) Use of improper holding temperatures was the single most important factor contributing to food poisoning. They included improper cooling, allowing a laps of time (12 hours or more) between preparing food and eating it, improper hot holding, and inadequate or improper thawing. Food thermometers were not used in most of the instances. (2) In inadequate cooking, the core temperature of food during and after cooking had not been measured, and routine monitoring was limited to recording the temperature of plated meals. Compared with conventional methods of cooking, microwave ovens did not protect against food poisoning as effectively. Centralized food preparation potentially increased the risk of food poisoning outbreaks. (3) Poor personal hygiene both at the individual level (improper handwashing and lack of proper hygienic practices) and at the institutional level (poor general sanitization) increased the risk of transmission. Person to person transmission of enteric pathogens through direct contact and via fomites has been noted in several instances. (4) Obtaining food from unsafe sources was a risk factor in outbreaks of food poisoning. Food risks were high when food was grown or harvested from contaminated areas. Possibilities included contamination in the field, in transport, at the retail site, or at the time it was prepared for serving. (5) Cross-contamination and inadequate cleaning/handling of equipment became potential vehicles of food poisoning. Failure to separate cooked food from raw food was also a risk factor. (6) Failure to follow food hygiene policies also provided opportunities for outbreaks of food poisoning. It included improper hygienic practices during food preparation, neglect of personnel policies (involvement of symptomatic workers in food preparation), poor results on routine inspections, and disregarding the results and recommendations of an inspection. (7) Lack of formal and in-service education, training, monitoring, and supervision of food handlers or supervisors were critical and perhaps neglected elements in occurrences of food poisoning.

  • PDF

Supervisor System Development for Improving Quality of RFID Cold Storage Management Systems (RFID 냉동창고 관리시스템의 품질향상을 위한 슈퍼바이저 시스템 개발)

  • Moon, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.109-117
    • /
    • 2014
  • A cold storage is a warehouse of a insulated building with cooling installations. It has many different types of cold rooms with temperatures below 0 degrees Celsius, and the sequential workflow such as receiving, picking and packing runs in that rooms. Recently, the cold storages have adopted RFID technology, and consequently, warehouse product management in them are becoming intelligent and network. However, information inconsistency in warehouses caused by physical and logical errors reduces reliability in the RFID cold storage management system and worsens their work efficiency. Therefore, it is necessary to develop an early detection system to identify errors. In this paper, we suggest a supervisory system detecting logical errors on business processes of the RFID cold storage. It is composed of a master supervisor and mobile supervisor. In the master supervisor, the manager can set the constraints conditions and get alerts, and in the mobile supervisor, the workers confirm and deal with these faults directly. The supervisory system improve reliability of the RFID cold storage management system by recognizing a failure to identify physically and logically using these constraint conditions. This paper shows that the supervisory system can reduce the average recovery time to improve reliability by decreasing the time for detecting and analyzing errors in the RFID cold storage management system.

Effects of Sulfuric Acid on the Synthesis of Highly Pure Calcium Borate in the Boron-Containing Brine and Bittern (붕소함유 염수와 간수로부터 고순도 calcium borate를 합성하는 반응에 황산이 미치는 영향)

  • Seo, Hyo-Jin;Kim, Myoung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.523-528
    • /
    • 2015
  • In this study, we investigated the effects of sulfuric acid on the synthesis of calcium borate in the artificial boron-containing brine (bittern) saturated with calcium hydroxide. For the study, we attempted to synthesize calcium borate under various conditions such as reaction temperature, reaction time, and cooling temperature after heating, and then to examine the recovery and purity of the calcium borate according to the presence or absence of sulfuric acid at each condition. The XRD analysis confirmed that, regardless of the presence of sulfuric acid, the calcium borate ($Ca_2B_2O_5{\cdot}H_2O$) was synthesized, while, in the presence of sulfuric acid, the calcium sulfate ($CaSO_4{\cdot}0.5H_2O$) was produced as a by-product. In all the experiments performed by varying the reaction temperature and time, the recovery and purity of the calcium borate without sulfuric acid were observed higher than those with it. The results indicated that the addition of sulfuric acid increased the solubility of the calcium hydroxide, but the calcium sulfate produced as a by-product could decrease the recovery and purity of the calcium borate by preventing the synthesis. In this study, the artificial boron-containing brine (bittern) (500 mg-B/L) was saturated with calcium hydroxide in the absence of sulfuric acid, and then the solution was heated at $80-105^{\circ}C$ for less than 10 minutes to synthesize the calcium borate. The recovery and purity of calcium borate were measured as high as 80 % and 96 %, respectively.

Effect of High Pressure Freezing and Thawing Process on the Physical Properties of Pork (초고압 동결 및 해동방법이 돈육의 물리적 특성에 미치는 효과)

  • Shim, Kook-Bo;Hong, Geun-Pyo;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.736-742
    • /
    • 2009
  • This study was conducted to investigate the effect of various high pressure freezing and thawing treatments on the physical properties of pork. To compare the effects of the freezing and thawing process on meat quality, atmospheric freezing followed by running water thawing (AFRT), pressure shift freezing followed by running water thawing (SFRT), and pressure shift freezing and pressure assisted thawing (SFAT) were conducted at pressure of 250 MPa and cooling temperature of $-22^{\circ}C$. SAFT and SFRT showed a shorter phase transition time and total thawing time than AFRT. The pH value of treated samples increased significantly (p<0.05) compared to unfrozen meat. In addition, SFAT and SFRT showed a higher pHvalue than AFRT. Although the water holding capacity was significantly decreased (p<0.05) for SFAT and SFRT, SFRT reduced drip loss. In regards to color, SFAT and SFRT resulted in a significant increase in color parameters (p<0.05) relative to AFRT, while SFAT produced a higher L*-value. High pressure treatment significantly increased shear force (p<0.05) compared to AFRT, and, where SFRT showed the highest shear force. Therefore, these combined results indicated that the hydrostatic pressure treatment improved the functional properties of pork and increased the freezing and thawing rate.

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

The Age of the Earth: Reappraisal (지구의 나이: 재평가)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.273-277
    • /
    • 2014
  • This paper presents a brief historical review of various attempts to estimate the age of the Earth, and reappraises the study of Patterson (1956) which revealed for the first time that the age of the Earth is $4550{\pm}70Ma$ by measuring Pb isotope ratios of several meteorites and a marine sediment. The standard model for the planetary formation of early solar system is: formation of solid particles condensed from the cooling of hot nebular gas -> formation of planet-sized bodies by accretion of those solid particles. The Moon is supposed to have formed from the accretion of the relicts produced by the collision of proto-Earth with Mars-sized body. It is not easy to pinpoint the age of the Earth, considering the series of events related to the formation of the Earth. So, I propose that the collision age as that of the Earth, since the present status of the Earth is thought to be the direct product of the collision. According to the previous studies, the collision age can be broadly constrained between the age ($4567.30{\pm}0.16Ma$) of the earliest condensates (CAI, calcium-aluminum rich inclusion) of the nebula gas, i.e., the age of the solar system, and the oldest age ($4,456{\pm}40Ma$) among rocks and minerals of the Earth and the Moon. We need more precise estimation of the collision age, since it is important in estimating time scale for the formation of planet-size body and in revealing thermal evolution of magma oceans of the Earth and the Moon presumably developed right after the collision.

A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings (제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구)

  • Kang, Ja-Yoon;Cho, Young-Chan;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.273-281
    • /
    • 2019
  • The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings' energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.